home *** CD-ROM | disk | FTP | other *** search
/ Celestin Apprentice 2 / Apprentice-Release2.iso / Source Code / C / Utilities / Calc 1.24.7 / calc / calc.rsrc
MacOS Resource Fork  |  1993-10-12  |  212.3 KB  |  [APPL/????]

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: MacOS Resource Fork (archive/rsrc).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert MacOS Resource Fork (archive/rsrc) magic Supported
100% dexvert MacOS Executable (executable/macOSExecutable) idMeta Supported
10% dexvert Jesper Olsen Module (music/jesperOlsen) magic Supported
1% dexvert BeOS Resource Data (archive/beOSResourceData) ext Unsupported
1% dexvert AppleSingle (archive/appleSingle) fallback Supported
0% dexvert TTComp Archive (archive/ttcomp) fallback Supported
100% file AppleDouble encoded Macintosh file default
99% file data default
66% TrID Mac AppleDouble encoded default
33% TrID TTComp archive compressed (bin-2K) default (weak)
100% siegfried fmt/503 AppleDouble Resource Fork (2) default
100% lsar AppleSingle default


id metadata
keyvalue
macFileType[APPL]
macFileCreator[????]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 05 16 07 00 02 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000010| 00 00 00 00 00 00 00 00 | 00 02 00 00 00 09 00 00 |........|........|
|00000020| 00 32 00 00 00 20 00 00 | 00 02 00 00 00 52 00 03 |.2... ..|.....R..|
|00000030| 50 f6 41 50 50 4c 3f 3f | 3f 3f 01 00 00 00 00 00 |P.APPL??|??......|
|00000040| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000050| 00 00 00 00 01 00 00 03 | 4f dc 00 03 4e dc 00 00 |........|O...N...|
|00000060| 01 1a 64 69 66 66 74 69 | 6d 65 28 74 69 6d 65 5f |..diffti|me(time_|
|00000070| 74 2c 20 74 69 6d 65 5f | 74 29 3b 0d 74 69 6d 65 |t, time_|t);.time|
|00000080| 5f 74 04 63 61 6c 63 81 | 02 00 00 00 41 50 50 4c |_t.calc.|....APPL|
|00000090| 3f 3f 3f 3f 21 00 00 00 | 01 00 00 00 00 01 50 84 |????!...|......P.|
|000000a0| 00 00 00 00 41 50 50 4c | 3f 3f 3f 3f 21 00 00 00 |....APPL|????!...|
|000000b0| 01 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000000c0| 00 00 00 00 a8 e0 71 6d | 00 00 00 00 00 03 50 f6 |......qm|......P.|
|000000d0| 3b 0d 63 68 61 72 20 2a | 63 74 69 6d 65 28 63 6f |;.char *|ctime(co|
|000000e0| 6e 73 74 20 74 69 6d 65 | 5f 74 20 2a 29 3b 0d 73 |nst time|_t *);.s|
|000000f0| 74 72 75 63 74 20 74 6d | 20 2a 67 6d 74 69 6d 65 |truct tm| *gmtime|
|00000100| 28 63 6f 6e 73 74 20 74 | 69 6d 65 5f 74 20 2a 29 |(const t|ime_t *)|
|00000110| 3b 0d 73 74 72 75 63 74 | 20 74 6d 20 2a 6c 6f 63 |;.struct| tm *loc|
|00000120| 61 6c 74 69 6d 65 28 63 | 6f 6e 73 74 20 74 69 6d |altime(c|onst tim|
|00000130| 65 5f 74 20 2a 29 3b 0d | 73 69 7a 65 5f 74 20 73 |e_t *);.|size_t s|
|00000140| 74 72 66 74 69 6d 65 28 | 63 68 61 72 20 2a 2c 20 |trftime(|char *, |
|00000150| 73 69 00 00 7a d4 00 00 | 68 65 6c 70 00 00 2e 63 |si..z...|help...c|
|00000160| 61 6c 00 00 43 61 6e 6e | 6f 74 20 6f 70 65 6e 20 |al..Cann|ot open |
|00000170| 22 25 73 22 0a 00 45 72 | 72 6f 72 20 77 72 69 74 |"%s"..Er|ror writ|
|00000180| 69 6e 67 20 22 25 73 22 | 0a 00 2a 2a 00 00 2a 00 |ing "%s"|..**..*.|
|00000190| 44 65 63 6c 61 72 61 74 | 69 6f 6e 73 20 6d 75 73 |Declarat|ions mus|
|000001a0| 74 20 62 65 20 75 73 65 | 64 20 62 65 66 6f 72 65 |t be use|d before|
|000001b0| 20 63 6f 64 65 00 46 75 | 6e 63 74 69 6f 6e 20 6e | code.Fu|nction n|
|000001c0| 61 6d 65 20 65 78 70 65 | 63 74 65 64 00 00 4c 65 |ame expe|cted..Le|
|000001d0| 66 74 20 70 61 72 65 6e | 74 68 65 73 69 73 20 65 |ft paren|thesis e|
|000001e0| 78 70 65 63 74 65 64 20 | 66 6f 72 20 66 75 6e 63 |xpected |for func|
|000001f0| 74 69 6f 6e 00 00 42 61 | 64 20 66 75 6e 63 74 69 |tion..Ba|d functi|
|00000200| 6f 6e 20 64 65 66 69 6e | 69 74 69 6f 6e 00 50 61 |on defin|ition.Pa|
|00000210| 72 61 6d 65 74 65 72 20 | 22 25 73 22 20 69 73 20 |rameter |"%s" is |
|00000220| 61 6c 72 65 61 64 79 20 | 64 65 66 69 6e 65 64 00 |already |defined.|
|00000230| 42 61 64 20 66 75 6e 63 | 74 69 6f 6e 20 64 65 66 |Bad func|tion def|
|00000240| 69 6e 69 74 69 6f 6e 00 | 4c 65 66 74 20 62 72 61 |inition.|Left bra|
|00000250| 63 65 20 6f 72 20 65 71 | 75 61 6c 73 20 73 69 67 |ce or eq|uals sig|
|00000260| 6e 20 65 78 70 65 63 74 | 65 64 20 66 6f 72 20 66 |n expect|ed for f|
|00000270| 75 6e 63 74 69 6f 6e 00 | 4d 69 73 73 69 6e 67 20 |unction.|Missing |
|00000280| 65 71 75 61 6c 73 20 66 | 6f 72 20 73 69 6d 70 6c |equals f|or simpl|
|00000290| 65 20 66 75 6e 63 74 69 | 6f 6e 20 62 6f 64 79 00 |e functi|on body.|
|000002a0| 49 6c 6c 65 67 61 6c 20 | 66 75 6e 63 74 69 6f 6e |Illegal |function|
|000002b0| 20 64 65 66 69 6e 69 74 | 69 6f 6e 00 4d 69 73 73 | definit|ion.Miss|
|000002c0| 69 6e 67 20 6c 65 66 74 | 20 62 72 61 63 65 20 66 |ing left| brace f|
|000002d0| 6f 72 20 66 75 6e 63 74 | 69 6f 6e 20 62 6f 64 79 |or funct|ion body|
|000002e0| 00 00 44 65 63 6c 61 72 | 61 74 69 6f 6e 73 20 6d |..Declar|ations m|
|000002f0| 75 73 74 20 62 65 20 61 | 74 20 74 68 65 20 74 6f |ust be a|t the to|
|00000300| 70 20 6f 66 20 74 68 65 | 20 66 75 6e 63 74 69 6f |p of the| functio|
|00000310| 6e 00 44 65 63 6c 61 72 | 61 74 69 6f 6e 73 20 6d |n.Declar|ations m|
|00000320| 75 73 74 20 62 65 20 75 | 73 65 64 20 62 65 66 6f |ust be u|sed befo|
|00000330| 72 65 20 63 6f 64 65 00 | 56 61 72 69 61 62 6c 65 |re code.|Variable|
|00000340| 20 6e 61 6d 65 20 65 78 | 70 65 63 74 65 64 20 66 | name ex|pected f|
|00000350| 6f 72 20 64 65 63 6c 61 | 72 61 74 69 6f 6e 20 73 |or decla|ration s|
|00000360| 74 61 74 65 6d 65 6e 74 | 00 00 76 61 72 69 61 62 |tatement|..variab|
|00000370| 6c 65 20 22 25 73 22 20 | 69 73 20 61 6c 72 65 61 |le "%s" |is alrea|
|00000380| 64 79 20 64 65 66 69 6e | 65 64 00 00 42 61 64 20 |dy defin|ed..Bad |
|00000390| 73 79 6e 74 61 78 20 69 | 6e 20 64 65 63 6c 61 72 |syntax i|n declar|
|000003a0| 61 74 69 6f 6e 20 73 74 | 61 74 65 6d 65 6e 74 00 |ation st|atement.|
|000003b0| 45 78 74 72 61 6e 65 6f | 75 73 20 72 69 67 68 74 |Extraneo|us right|
|000003c0| 20 62 72 61 63 65 00 00 | 43 4f 4e 54 49 4e 55 45 | brace..|CONTINUE|
|000003d0| 20 6e 6f 74 20 77 69 74 | 68 69 6e 20 46 4f 52 2c | not wit|hin FOR,|
|000003e0| 20 57 48 49 4c 45 2c 20 | 6f 72 20 44 4f 00 42 52 | WHILE, |or DO.BR|
|000003f0| 45 41 4b 20 6e 6f 74 20 | 77 69 74 68 69 6e 20 46 |EAK not |within F|
|00000400| 4f 52 2c 20 57 48 49 4c | 45 2c 20 6f 72 20 44 4f |OR, WHIL|E, or DO|
|00000410| 00 00 4d 69 73 73 69 6e | 67 20 6c 61 62 65 6c 20 |..Missin|g label |
|00000420| 69 6e 20 67 6f 74 6f 00 | 4c 65 66 74 20 70 61 72 |in goto.|Left par|
|00000430| 65 6e 74 68 65 73 69 73 | 20 65 78 70 65 63 74 65 |enthesis| expecte|
|00000440| 64 00 4d 69 73 73 69 6e | 67 20 73 65 6d 69 63 6f |d.Missin|g semico|
|00000450| 6c 6f 6e 00 4d 69 73 73 | 69 6e 67 20 73 65 6d 69 |lon.Miss|ing semi|
|00000460| 63 6f 6c 6f 6e 00 52 69 | 67 68 74 20 70 61 72 65 |colon.Ri|ght pare|
|00000470| 6e 74 68 65 73 69 73 20 | 65 78 70 65 63 74 65 64 |nthesis |expected|
|00000480| 00 00 57 48 49 4c 45 20 | 6b 65 79 77 6f 72 64 20 |..WHILE |keyword |
|00000490| 65 78 70 65 63 74 65 64 | 20 66 6f 72 20 44 4f 20 |expected| for DO |
|000004a0| 73 74 61 74 65 6d 65 6e | 74 00 4d 69 73 73 69 6e |statemen|t.Missin|
|000004b0| 67 20 6c 65 66 74 20 62 | 72 61 63 65 20 66 6f 72 |g left b|race for|
|000004c0| 20 73 77 69 74 63 68 20 | 73 74 61 74 65 6d 65 6e | switch |statemen|
|000004d0| 74 00 43 41 53 45 20 6e | 6f 74 20 77 69 74 68 69 |t.CASE n|ot withi|
|000004e0| 6e 20 53 57 49 54 43 48 | 20 73 74 61 74 65 6d 65 |n SWITCH| stateme|
|000004f0| 6e 74 00 00 43 6f 6c 6f | 6e 20 65 78 70 65 63 74 |nt..Colo|n expect|
|00000500| 65 64 20 61 66 74 65 72 | 20 43 41 53 45 20 65 78 |ed after| CASE ex|
|00000510| 70 72 65 73 73 69 6f 6e | 00 00 43 6f 6c 6f 6e 20 |pression|..Colon |
|00000520| 65 78 70 65 63 74 65 64 | 20 61 66 74 65 72 20 44 |expected| after D|
|00000530| 45 46 41 55 4c 54 20 6b | 65 79 77 6f 72 64 00 00 |EFAULT k|eyword..|
|00000540| 44 45 46 41 55 4c 54 20 | 6e 6f 74 20 77 69 74 68 |DEFAULT |not with|
|00000550| 69 6e 20 53 57 49 54 43 | 48 20 73 74 61 74 65 6d |in SWITC|H statem|
|00000560| 65 6e 74 00 4d 75 6c 74 | 69 70 6c 65 20 44 45 46 |ent.Mult|iple DEF|
|00000570| 41 55 4c 54 20 63 6c 61 | 75 73 65 73 20 69 6e 20 |AULT cla|uses in |
|00000580| 53 57 49 54 43 48 00 00 | 45 4c 53 45 20 77 69 74 |SWITCH..|ELSE wit|
|00000590| 68 6f 75 74 20 70 72 65 | 63 65 65 64 69 6e 67 20 |hout pre|ceeding |
|000005a0| 49 46 00 00 53 65 6d 69 | 63 6f 6c 6f 6e 20 65 78 |IF..Semi|colon ex|
|000005b0| 70 65 63 74 65 64 00 00 | 4f 62 6a 65 63 74 20 74 |pected..|Object t|
|000005c0| 79 70 65 20 6e 61 6d 65 | 20 6d 69 73 73 69 6e 67 |ype name| missing|
|000005d0| 00 00 4d 69 73 73 69 6e | 67 20 65 6c 65 6d 65 6e |..Missin|g elemen|
|000005e0| 74 20 6e 61 6d 65 20 69 | 6e 20 4f 42 4a 20 73 74 |t name i|n OBJ st|
|000005f0| 61 74 65 6d 65 6e 74 00 | 44 75 70 6c 69 63 61 74 |atement.|Duplicat|
|00000600| 65 20 65 6c 65 6d 65 6e | 74 20 6e 61 6d 65 20 22 |e elemen|t name "|
|00000610| 25 73 22 00 42 61 64 20 | 6f 62 6a 65 63 74 20 65 |%s".Bad |object e|
|00000620| 6c 65 6d 65 6e 74 20 64 | 65 66 69 6e 69 74 69 6f |lement d|efinitio|
|00000630| 6e 00 4f 62 6a 65 63 74 | 20 25 73 20 68 61 73 20 |n.Object| %s has |
|00000640| 6e 6f 74 20 62 65 65 6e | 20 64 65 66 69 6e 65 64 |not been| defined|
|00000650| 20 79 65 74 00 00 42 61 | 64 20 4f 42 4a 20 73 74 | yet..Ba|d OBJ st|
|00000660| 61 74 65 6d 65 6e 74 00 | 4d 69 73 73 69 6e 67 20 |atement.|Missing |
|00000670| 6c 65 66 74 20 62 72 61 | 63 6b 65 74 20 66 6f 72 |left bra|cket for|
|00000680| 20 4d 41 54 00 00 4f 6e | 6c 79 20 25 64 20 64 69 | MAT..On|ly %d di|
|00000690| 6d 65 6e 73 69 6f 6e 73 | 20 61 6c 6c 6f 77 65 64 |mensions| allowed|
|000006a0| 00 00 49 6c 6c 65 67 61 | 6c 20 6d 61 74 72 69 78 |..Illega|l matrix|
|000006b0| 20 64 65 66 69 6e 69 74 | 69 6f 6e 00 4d 69 73 73 | definit|ion.Miss|
|000006c0| 69 6e 67 20 6c 65 66 74 | 20 70 61 72 65 6e 74 68 |ing left| parenth|
|000006d0| 65 73 69 73 20 66 6f 72 | 20 63 6f 6e 64 69 74 69 |esis for| conditi|
|000006e0| 6f 6e 00 00 4d 69 73 73 | 69 6e 67 20 72 69 67 68 |on..Miss|ing righ|
|000006f0| 74 20 70 61 72 65 6e 74 | 68 65 73 69 73 20 66 6f |t parent|hesis fo|
|00000700| 72 20 63 6f 6e 64 69 74 | 69 6f 6e 00 4d 69 73 73 |r condit|ion.Miss|
|00000710| 69 6e 67 20 6f 70 65 72 | 61 74 6f 72 00 00 49 6c |ing oper|ator..Il|
|00000720| 6c 65 67 61 6c 20 61 73 | 73 69 67 6e 6d 65 6e 74 |legal as|signment|
|00000730| 00 00 4d 69 73 73 69 6e | 67 20 63 6f 6c 6f 6e 20 |..Missin|g colon |
|00000740| 66 6f 72 20 63 6f 6e 64 | 69 74 69 6f 6e 61 6c 20 |for cond|itional |
|00000750| 65 78 70 72 65 73 73 69 | 6f 6e 00 00 42 61 64 20 |expressi|on..Bad |
|00000760| 2b 2b 20 75 73 61 67 65 | 00 00 42 61 64 20 2d 2d |++ usage|..Bad --|
|00000770| 20 75 73 61 67 65 00 00 | 4d 69 73 73 69 6e 67 20 | usage..|Missing |
|00000780| 72 69 67 68 74 20 70 61 | 72 65 6e 74 68 65 73 69 |right pa|renthesi|
|00000790| 73 00 42 61 64 20 69 6e | 64 65 78 20 75 73 61 67 |s.Bad in|dex usag|
|000007a0| 65 00 42 61 64 20 65 6c | 65 6d 65 6e 74 20 72 65 |e.Bad el|ement re|
|000007b0| 66 65 72 65 6e 63 65 00 | 45 78 70 72 65 73 73 69 |ference.|Expressi|
|000007c0| 6f 6e 20 63 6f 6e 74 61 | 69 6e 73 20 72 65 73 65 |on conta|ins rese|
|000007d0| 72 76 65 64 20 6b 65 79 | 77 6f 72 64 00 00 4d 69 |rved key|word..Mi|
|000007e0| 73 73 69 6e 67 20 65 78 | 70 72 65 73 73 69 6f 6e |ssing ex|pression|
|000007f0| 00 00 42 61 64 20 2b 2b | 20 75 73 61 67 65 00 00 |..Bad ++| usage..|
|00000800| 42 61 64 20 2d 2d 20 75 | 73 61 67 65 00 00 46 75 |Bad -- u|sage..Fu|
|00000810| 6e 63 74 69 6f 6e 20 63 | 61 6c 6c 73 20 6e 6f 74 |nction c|alls not|
|00000820| 20 61 6c 6c 6f 77 65 64 | 20 61 73 20 65 78 70 72 | allowed| as expr|
|00000830| 65 73 73 69 6f 6e 73 00 | 46 69 6c 65 6e 61 6d 65 |essions.|Filename|
|00000840| 20 65 78 70 65 63 74 65 | 64 00 4d 69 73 73 69 6e | expecte|d.Missin|
|00000850| 67 20 73 65 6d 69 63 6f | 6c 6f 6e 20 61 66 74 65 |g semico|lon afte|
|00000860| 72 20 66 69 6c 65 6e 61 | 6d 65 00 00 42 61 64 20 |r filena|me..Bad |
|00000870| 73 79 6e 74 61 78 20 66 | 6f 72 20 53 48 4f 57 20 |syntax f|or SHOW |
|00000880| 63 6f 6d 6d 61 6e 64 00 | 42 61 64 20 73 79 6e 74 |command.|Bad synt|
|00000890| 61 78 20 66 6f 72 20 53 | 48 4f 57 20 63 6f 6d 6d |ax for S|HOW comm|
|000008a0| 61 6e 64 00 62 75 69 6c | 74 69 6e 73 00 67 6c 6f |and.buil|tins.glo|
|000008b0| 62 61 6c 73 00 66 75 6e | 63 74 69 6f 6e 73 00 6f |bals.fun|ctions.o|
|000008c0| 62 6a 66 75 6e 63 73 00 | 6d 65 6d 6f 72 79 00 00 |bjfuncs.|memory..|
|000008d0| 55 6e 6b 6e 6f 77 6e 20 | 53 48 4f 57 20 70 61 72 |Unknown |SHOW par|
|000008e0| 61 6d 65 74 65 72 20 22 | 25 73 22 00 4d 61 74 72 |ameter "|%s".Matr|
|000008f0| 69 78 20 69 6e 64 65 78 | 69 6e 67 20 65 78 70 65 |ix index|ing expe|
|00000900| 63 74 65 64 00 00 42 61 | 64 20 66 61 73 74 20 69 |cted..Ba|d fast i|
|00000910| 6e 64 65 78 20 75 73 61 | 67 65 00 00 54 6f 6f 20 |ndex usa|ge..Too |
|00000920| 6d 61 6e 79 20 64 69 6d | 65 6e 73 69 6f 6e 73 20 |many dim|ensions |
|00000930| 66 6f 72 20 61 72 72 61 | 79 20 72 65 66 65 72 65 |for arra|y refere|
|00000940| 6e 63 65 00 4d 69 73 73 | 69 6e 67 20 72 69 67 68 |nce.Miss|ing righ|
|00000950| 74 20 62 72 61 63 6b 65 | 74 20 69 6e 20 61 72 72 |t bracke|t in arr|
|00000960| 61 79 20 72 65 66 65 72 | 65 6e 63 65 00 00 45 6c |ay refer|ence..El|
|00000970| 65 6d 65 6e 74 20 22 25 | 73 22 20 69 73 20 75 6e |ement "%|s" is un|
|00000980| 64 65 66 69 6e 65 64 00 | 52 65 73 65 72 76 65 64 |defined.|Reserved|
|00000990| 20 6b 65 79 77 6f 72 64 | 20 75 73 65 64 20 61 73 | keyword| used as|
|000009a0| 20 73 79 6d 62 6f 6c 20 | 6e 61 6d 65 00 00 53 79 | symbol |name..Sy|
|000009b0| 6d 62 6f 6c 20 6e 61 6d | 65 20 65 78 70 65 63 74 |mbol nam|e expect|
|000009c0| 65 64 00 00 22 25 73 22 | 20 69 73 20 75 6e 64 65 |ed.."%s"| is unde|
|000009d0| 66 69 6e 65 64 00 54 61 | 6b 69 6e 67 20 61 64 64 |fined.Ta|king add|
|000009e0| 72 65 73 73 20 6f 66 20 | 6e 6f 6e 2d 76 61 72 69 |ress of |non-vari|
|000009f0| 61 62 6c 65 00 00 4d 69 | 73 73 69 6e 67 20 72 69 |able..Mi|ssing ri|
|00000a00| 67 68 74 20 70 61 72 65 | 6e 74 68 65 73 69 73 20 |ght pare|nthesis |
|00000a10| 69 6e 20 66 75 6e 63 74 | 69 6f 6e 20 63 61 6c 6c |in funct|ion call|
|00000a20| 00 00 52 61 69 73 69 6e | 67 20 6e 75 6d 62 65 72 |..Raisin|g number|
|00000a30| 20 74 6f 20 6e 6f 6e 2d | 69 6e 74 65 67 72 61 6c | to non-|integral|
|00000a40| 20 70 6f 77 65 72 00 00 | 52 61 69 73 69 6e 67 20 | power..|Raising |
|00000a50| 6e 75 6d 62 65 72 20 74 | 6f 20 76 65 72 79 20 6c |number t|o very l|
|00000a60| 61 72 67 65 20 70 6f 77 | 65 72 00 00 52 61 69 73 |arge pow|er..Rais|
|00000a70| 69 6e 67 20 7a 65 72 6f | 20 74 6f 20 7a 65 72 6f |ing zero| to zero|
|00000a80| 74 68 20 70 6f 77 65 72 | 00 00 54 61 6b 69 6e 67 |th power|..Taking|
|00000a90| 20 62 61 64 20 72 6f 6f | 74 20 6f 66 20 63 6f 6d | bad roo|t of com|
|00000aa0| 70 6c 65 78 20 6e 75 6d | 62 65 72 00 4c 6f 67 61 |plex num|ber.Loga|
|00000ab0| 72 69 74 68 6d 20 6f 66 | 20 7a 65 72 6f 00 ff ff |rithm of| zero...|
|00000ac0| 93 20 ff ff 93 20 00 00 | 00 01 ff ff 93 38 ff ff |. ... ..|.....8..|
|00000ad0| 93 20 00 00 00 01 ff ff | 93 80 ff ff 93 20 00 00 |. ......|..... ..|
|00000ae0| 00 01 00 00 00 0c 00 00 | 00 64 00 00 44 69 76 69 |........|.d..Divi|
|00000af0| 73 69 6f 6e 20 62 79 20 | 7a 65 72 6f 00 00 49 6e |sion by |zero..In|
|00000b00| 76 65 72 74 69 6e 67 20 | 7a 65 72 6f 00 00 44 69 |verting |zero..Di|
|00000b10| 76 69 73 69 6f 6e 20 62 | 79 20 7a 65 72 6f 00 00 |vision b|y zero..|
|00000b20| 44 69 76 69 73 69 6f 6e | 20 62 79 20 7a 65 72 6f |Division| by zero|
|00000b30| 00 00 44 69 76 69 73 69 | 6f 6e 20 62 79 20 7a 65 |..Divisi|on by ze|
|00000b40| 72 6f 00 00 43 61 6e 6e | 6f 74 20 61 6c 6c 6f 63 |ro..Cann|ot alloc|
|00000b50| 61 74 65 20 63 6f 6d 70 | 6c 65 78 20 6e 75 6d 62 |ate comp|lex numb|
|00000b60| 65 72 00 00 01 72 00 00 | 00 01 ff ff 86 0a 00 00 |er...r..|........|
|00000b70| 01 7a 00 00 00 08 ff ff | 86 0e 00 00 01 82 00 00 |.z......|........|
|00000b80| 00 06 ff ff 86 18 00 00 | 01 8a 00 00 00 07 ff ff |........|........|
|00000b90| 86 24 00 00 01 92 00 00 | 00 08 ff ff 86 2e 00 00 |.$......|........|
|00000ba0| 01 9a 00 00 00 06 ff ff | 86 3a 00 00 01 a2 00 00 |........|.:......|
|00000bb0| 00 07 ff ff 86 46 00 00 | 01 aa 00 00 00 02 ff ff |.....F..|........|
|00000bc0| 86 52 00 00 01 b2 00 00 | 00 02 ff ff 86 5a 00 00 |.R......|.....Z..|
|00000bd0| 01 ba 00 00 00 02 ff ff | 86 64 00 00 01 c2 00 00 |........|.d......|
|00000be0| 00 01 ff ff 86 70 00 00 | 01 ca 00 00 00 01 ff ff |.....p..|........|
|00000bf0| 86 78 00 00 01 d2 00 00 | 00 01 ff ff 86 7c 00 00 |.x......|.....|..|
|00000c00| 01 da 00 00 00 01 ff ff | 86 80 00 00 01 e2 00 00 |........|........|
|00000c10| 00 01 ff ff 86 84 00 00 | 01 ea 00 00 00 01 ff ff |........|........|
|00000c20| 86 88 00 00 01 f2 00 00 | 00 01 ff ff 86 8c 00 00 |........|........|
|00000c30| 01 fa 00 00 00 01 ff ff | 86 92 00 00 02 02 00 00 |........|........|
|00000c40| 00 01 ff ff 86 9a 00 00 | 02 0a 00 00 00 01 ff ff |........|........|
|00000c50| 86 a2 00 00 02 12 00 00 | 00 01 ff ff 86 a6 00 00 |........|........|
|00000c60| 02 1a 00 00 00 01 ff ff | 86 ac 00 00 02 22 00 00 |........|....."..|
|00000c70| 00 01 ff ff 86 b6 00 00 | 02 2a 00 00 00 01 ff ff |........|.*......|
|00000c80| 86 c2 00 00 02 32 00 00 | 00 01 ff ff 86 cc 00 00 |.....2..|........|
|00000c90| 02 3a 00 00 00 05 ff ff | 86 d0 00 00 02 42 00 00 |.:......|.....B..|
|00000ca0| 00 04 ff ff 86 d8 00 00 | 02 4a 00 00 00 04 ff ff |........|.J......|
|00000cb0| 86 e0 00 00 02 52 00 00 | 00 04 ff ff 86 e8 00 00 |.....R..|........|
|00000cc0| 02 5a 00 00 00 03 ff ff | 86 ee 00 00 02 62 00 00 |.Z......|.....b..|
|00000cd0| 00 01 ff ff 86 f8 00 00 | 02 6a 00 00 00 01 ff ff |........|.j......|
|00000ce0| 87 02 00 00 02 72 00 00 | 00 01 ff ff 87 06 00 00 |.....r..|........|
|00000cf0| 02 7a 00 00 00 01 ff ff | 87 0a 00 00 02 82 00 00 |.z......|........|
|00000d00| 00 01 ff ff 87 0e 00 00 | 02 8a 00 00 00 01 ff ff |........|........|
|00000d10| 87 12 00 00 02 92 00 00 | 00 01 ff ff 87 16 00 00 |........|........|
|00000d20| 02 9a 00 00 00 01 ff ff | 87 1a 00 00 02 a2 00 00 |........|........|
|00000d30| 00 01 ff ff 87 22 00 00 | 02 aa 00 00 00 01 ff ff |....."..|........|
|00000d40| 87 2a 00 00 02 b2 00 00 | 00 01 ff ff 87 32 00 00 |.*......|.....2..|
|00000d50| 02 ba 00 00 00 02 ff ff | 87 3a 00 00 02 c2 00 00 |........|.:......|
|00000d60| 00 02 ff ff 87 40 00 00 | 02 ca 00 00 00 01 ff ff |.....@..|........|
|00000d70| 87 46 00 00 02 d2 00 00 | 00 01 ff ff 87 50 00 00 |.F......|.....P..|
|00000d80| 02 da 00 00 00 01 ff ff | 87 56 00 00 02 e2 00 00 |........|.V......|
|00000d90| 00 01 ff ff 87 5a 00 00 | 02 ea 00 00 00 01 ff ff |.....Z..|........|
|00000da0| 87 64 00 00 02 f2 00 00 | 00 09 ff ff 87 70 00 00 |.d......|.....p..|
|00000db0| 02 fa 00 00 00 01 ff ff | 87 7a 00 00 03 02 00 00 |........|.z......|
|00000dc0| 00 01 ff ff 87 84 00 00 | 03 0a 00 00 00 01 ff ff |........|........|
|00000dd0| 87 8e 00 00 03 12 00 00 | 00 01 ff ff 87 92 00 00 |........|........|
|00000de0| 03 1a 00 00 00 09 ff ff | 87 98 00 00 03 22 00 00 |........|....."..|
|00000df0| 00 03 ff ff 87 9e 00 00 | 03 2a 00 00 00 01 ff ff |........|.*......|
|00000e00| 87 a4 00 00 03 32 00 00 | 00 01 ff ff 87 b0 00 00 |.....2..|........|
|00000e10| 03 3a 00 00 00 01 ff ff | 87 b4 00 00 03 42 00 00 |.:......|.....B..|
|00000e20| 00 01 ff ff 87 b8 00 00 | 03 4a 00 00 00 01 ff ff |........|.J......|
|00000e30| 87 bc 00 00 03 52 00 00 | 00 01 ff ff 87 c0 00 00 |.....R..|........|
|00000e40| 03 5a 00 00 00 01 ff ff | 87 c4 00 00 03 62 00 00 |.Z......|.....b..|
|00000e50| 00 04 ff ff 87 ca 00 00 | 03 6a 00 00 00 04 ff ff |........|.j......|
|00000e60| 87 d6 00 00 03 72 00 00 | 00 01 ff ff 87 e2 00 00 |.....r..|........|
|00000e70| 03 7a 00 00 00 09 ff ff | 87 ea 00 00 03 82 00 00 |.z......|........|
|00000e80| 00 01 ff ff 87 f2 00 00 | 03 8a 00 00 00 01 ff ff |........|........|
|00000e90| 87 f8 00 00 03 92 00 00 | 00 01 ff ff 87 fe 00 00 |........|........|
|00000ea0| 03 9a 00 00 00 0a ff ff | 88 06 00 00 03 a2 00 00 |........|........|
|00000eb0| 00 02 ff ff 88 10 00 00 | 03 aa 00 00 00 01 ff ff |........|........|
|00000ec0| 88 18 00 00 03 b2 00 00 | 00 01 ff ff 88 1e 00 00 |........|........|
|00000ed0| 03 ba 00 00 00 01 ff ff | 88 24 00 00 03 c2 00 00 |........|.$......|
|00000ee0| 00 01 ff ff 88 2e 00 00 | 03 ca 00 00 00 01 ff ff |........|........|
|00000ef0| 88 38 00 00 03 d2 00 00 | 00 04 ff ff 88 44 00 00 |.8......|.....D..|
|00000f00| 03 da 00 00 00 01 ff ff | 88 4e 00 00 03 e2 00 00 |........|.N......|
|00000f10| 00 01 ff ff 88 54 00 00 | 03 ea 00 00 00 01 ff ff |.....T..|........|
|00000f20| 88 5c 00 00 03 f2 00 00 | 00 01 ff ff 88 64 00 00 |.\......|.....d..|
|00000f30| 03 fa 00 00 00 01 ff ff | 88 6c 00 00 04 02 00 00 |........|.l......|
|00000f40| 00 02 ff ff 88 74 00 00 | 04 0a 00 00 00 01 ff ff |.....t..|........|
|00000f50| 88 7e 00 00 04 12 00 00 | 00 01 ff ff 88 82 00 00 |.~......|........|
|00000f60| 04 1a 00 00 00 01 ff ff | 88 86 00 00 04 22 00 00 |........|....."..|
|00000f70| 00 02 ff ff 88 90 00 00 | 04 2a 00 00 00 01 ff ff |........|.*......|
|00000f80| 88 98 00 00 04 32 00 00 | 00 01 ff ff 88 9e 00 00 |.....2..|........|
|00000f90| 04 3a 00 00 00 02 ff ff | 88 a4 00 00 04 42 00 00 |.:......|.....B..|
|00000fa0| 00 02 ff ff 88 ae 00 00 | 04 4a 00 00 00 01 ff ff |........|.J......|
|00000fb0| 88 b8 00 00 04 52 00 00 | 00 01 ff ff 88 c0 00 00 |.....R..|........|
|00000fc0| 04 5a 00 00 00 01 ff ff | 88 c6 00 00 04 62 00 00 |.Z......|.....b..|
|00000fd0| 00 01 ff ff 88 ce 00 00 | 04 6a 00 00 00 01 ff ff |........|.j......|
|00000fe0| 88 d4 00 00 04 72 00 00 | 00 01 ff ff 88 de 00 00 |.....r..|........|
|00000ff0| 04 7a 00 00 00 01 ff ff | 88 e2 00 00 04 82 00 00 |.z......|........|
|00001000| 00 01 ff ff 88 ea 00 00 | 04 8a 00 00 00 01 ff ff |........|........|
|00001010| 88 f4 00 00 04 92 00 00 | 00 01 ff ff 89 00 00 00 |........|........|
|00001020| 04 9a 00 00 00 01 ff ff | 89 0c 00 00 4e 6f 20 6d |........|....No m|
|00001030| 65 6d 6f 72 79 20 66 6f | 72 20 6c 6f 63 61 6c 20 |emory fo|r local |
|00001040| 76 61 72 69 61 62 6c 65 | 73 00 43 61 6c 63 75 6c |variable|s.Calcul|
|00001050| 61 74 69 6f 6e 20 61 62 | 6f 72 74 65 64 20 69 6e |ation ab|orted in|
|00001060| 20 6f 70 63 6f 64 65 00 | 46 75 6e 63 74 69 6f 6e | opcode.|Function|
|00001070| 20 70 63 20 6f 75 74 20 | 6f 66 20 72 61 6e 67 65 | pc out |of range|
|00001080| 00 00 45 76 61 6c 75 61 | 74 69 6f 6e 20 73 74 61 |..Evalua|tion sta|
|00001090| 63 6b 20 64 65 70 74 68 | 20 65 78 63 65 65 64 65 |ck depth| exceede|
|000010a0| 64 00 46 75 6e 63 74 69 | 6f 6e 20 6f 70 63 6f 64 |d.Functi|on opcod|
|000010b0| 65 20 6f 75 74 20 6f 66 | 20 72 61 6e 67 65 00 00 |e out of| range..|
|000010c0| 25 38 73 2c 20 70 63 20 | 25 34 6c 64 3a 20 20 00 |%8s, pc |%4ld: .|
|000010d0| 4d 69 73 61 6c 69 67 6e | 65 64 20 73 74 61 63 6b |Misalign|ed stack|
|000010e0| 00 00 55 6e 6b 6e 6f 77 | 6e 20 6f 70 63 6f 64 65 |..Unknow|n opcode|
|000010f0| 20 74 79 70 65 00 25 73 | 00 00 4f 50 25 6c 64 00 | type.%s|..OP%ld.|
|00001100| 20 25 73 0a 00 00 20 25 | 73 0a 00 00 20 25 73 0a | %s... %|s... %s.|
|00001110| 00 00 20 22 25 73 22 0a | 00 00 20 22 25 73 22 0a |.. "%s".|.. "%s".|
|00001120| 00 00 0a 00 20 25 6c 64 | 0a 00 20 25 72 0a 00 00 |.... %ld|.. %r...|
|00001130| 20 6c 69 6e 65 20 25 6c | 64 0a 00 00 20 25 73 20 | line %l|d... %s |
|00001140| 77 69 74 68 20 25 6c 64 | 20 61 72 67 73 0a 00 00 |with %ld| args...|
|00001150| 20 25 73 20 77 69 74 68 | 20 25 6c 64 20 61 72 67 | %s with| %ld arg|
|00001160| 73 0a 00 00 0a 00 42 61 | 64 20 6c 6f 63 61 6c 20 |s.....Ba|d local |
|00001170| 76 61 72 69 61 62 6c 65 | 20 69 6e 64 65 78 00 00 |variable| index..|
|00001180| 47 6c 6f 62 61 6c 20 76 | 61 72 69 61 62 6c 65 20 |Global v|ariable |
|00001190| 22 25 73 22 20 6e 6f 74 | 20 69 6e 69 74 69 61 6c |"%s" not| initial|
|000011a0| 69 7a 65 64 00 00 42 61 | 64 20 70 61 72 61 6d 65 |ized..Ba|d parame|
|000011b0| 74 65 72 20 69 6e 64 65 | 78 00 42 61 64 20 6c 6f |ter inde|x.Bad lo|
|000011c0| 63 61 6c 20 76 61 72 69 | 61 62 6c 65 20 69 6e 64 |cal vari|able ind|
|000011d0| 65 78 00 00 47 6c 6f 62 | 61 6c 20 76 61 72 69 61 |ex..Glob|al varia|
|000011e0| 62 6c 65 20 6e 6f 74 20 | 64 65 66 69 6e 65 64 00 |ble not |defined.|
|000011f0| 42 61 64 20 70 61 72 61 | 6d 61 65 74 65 72 20 69 |Bad para|maeter i|
|00001200| 6e 64 65 78 00 00 49 6c | 6c 65 67 61 6c 20 61 72 |ndex..Il|legal ar|
|00001210| 67 75 6d 65 6e 74 20 66 | 6f 72 20 61 72 67 20 66 |gument f|or arg f|
|00001220| 75 6e 63 74 69 6f 6e 00 | 4e 75 6d 65 72 69 63 20 |unction.|Numeric |
|00001230| 63 6f 6e 73 74 61 6e 74 | 20 76 61 6c 75 65 20 6e |constant| value n|
|00001240| 6f 74 20 66 6f 75 6e 64 | 00 00 4e 75 6d 65 72 69 |ot found|..Numeri|
|00001250| 63 20 63 6f 6e 73 74 61 | 6e 74 20 76 61 6c 75 65 |c consta|nt value|
|00001260| 20 6e 6f 74 20 66 6f 75 | 6e 64 00 00 42 61 64 20 | not fou|nd..Bad |
|00001270| 64 69 6d 65 6e 73 69 6f | 6e 20 25 6c 64 20 66 6f |dimensio|n %ld fo|
|00001280| 72 20 6d 61 74 72 69 78 | 00 00 41 74 74 65 6d 70 |r matrix|..Attemp|
|00001290| 74 69 6e 67 20 74 6f 20 | 69 6e 69 74 20 6d 61 74 |ting to |init mat|
|000012a0| 72 69 78 20 66 6f 72 20 | 6e 6f 6e 2d 61 64 64 72 |rix for |non-addr|
|000012b0| 65 73 73 00 4e 6f 6e 2d | 6e 75 6d 65 72 69 63 20 |ess.Non-|numeric |
|000012c0| 62 6f 75 6e 64 73 20 66 | 6f 72 20 6d 61 74 72 69 |bounds f|or matri|
|000012d0| 78 00 4e 6f 6e 2d 69 6e | 74 65 67 72 61 6c 20 62 |x.Non-in|tegral b|
|000012e0| 6f 75 6e 64 73 20 66 6f | 72 20 6d 61 74 72 69 78 |ounds fo|r matrix|
|000012f0| 00 00 56 65 72 79 20 6c | 61 72 67 65 20 62 6f 75 |..Very l|arge bou|
|00001300| 6e 64 73 20 66 6f 72 20 | 6d 61 74 72 69 78 00 00 |nds for |matrix..|
|00001310| 56 65 72 79 20 6c 61 72 | 67 65 20 73 69 7a 65 20 |Very lar|ge size |
|00001320| 66 6f 72 20 6d 61 74 72 | 69 78 00 00 42 61 64 20 |for matr|ix..Bad |
|00001330| 64 69 6d 65 6e 73 69 6f | 6e 20 25 6c 64 20 66 6f |dimensio|n %ld fo|
|00001340| 72 20 6d 61 74 72 69 78 | 00 00 4e 6f 6e 2d 70 6f |r matrix|..Non-po|
|00001350| 69 6e 74 65 72 20 66 6f | 72 20 69 6e 64 65 78 20 |inter fo|r index |
|00001360| 6f 70 65 72 61 74 69 6f | 6e 00 41 74 74 65 6d 70 |operatio|n.Attemp|
|00001370| 74 69 6e 67 20 74 6f 20 | 69 6e 64 65 78 20 61 20 |ting to |index a |
|00001380| 6e 6f 6e 2d 6d 61 74 72 | 69 78 20 76 61 72 69 61 |non-matr|ix varia|
|00001390| 62 6c 65 00 49 6e 64 65 | 78 69 6e 67 20 61 20 25 |ble.Inde|xing a %|
|000013a0| 6c 64 64 20 6d 61 74 72 | 69 78 20 61 73 20 61 20 |ldd matr|ix as a |
|000013b0| 25 6c 64 64 20 6d 61 74 | 72 69 78 00 4e 6f 6e 2d |%ldd mat|rix.Non-|
|000013c0| 6e 75 6d 65 72 69 63 20 | 69 6e 64 65 78 20 66 6f |numeric |index fo|
|000013d0| 72 20 61 72 72 61 79 00 | 4e 6f 6e 2d 69 6e 74 65 |r array.|Non-inte|
|000013e0| 67 72 61 6c 20 69 6e 64 | 65 78 20 66 6f 72 20 61 |gral ind|ex for a|
|000013f0| 72 72 61 79 00 00 49 6e | 64 65 78 20 6f 75 74 20 |rray..In|dex out |
|00001400| 6f 66 20 62 6f 75 6e 64 | 73 00 4e 6f 6e 2d 70 6f |of bound|s.Non-po|
|00001410| 69 6e 74 65 72 20 66 6f | 72 20 65 6c 65 6d 65 6e |inter fo|r elemen|
|00001420| 74 20 72 65 66 65 72 65 | 6e 63 65 00 52 65 66 65 |t refere|nce.Refe|
|00001430| 72 65 6e 63 69 6e 67 20 | 65 6c 65 6d 65 6e 74 20 |rencing |element |
|00001440| 6f 66 20 6e 6f 6e 2d 6f | 62 6a 65 63 74 00 45 6c |of non-o|bject.El|
|00001450| 65 6d 65 6e 74 20 64 6f | 65 73 20 6e 6f 74 20 65 |ement do|es not e|
|00001460| 78 69 73 74 20 66 6f 72 | 20 6f 62 6a 65 63 74 00 |xist for| object.|
|00001470| 45 6c 65 6d 65 6e 74 20 | 64 6f 65 73 20 6e 6f 74 |Element |does not|
|00001480| 20 65 78 69 73 74 20 66 | 6f 72 20 6f 62 6a 65 63 | exist f|or objec|
|00001490| 74 00 41 74 74 65 6d 70 | 74 69 6e 67 20 74 6f 20 |t.Attemp|ting to |
|000014a0| 69 6e 69 74 20 6f 62 6a | 65 63 74 20 66 6f 72 20 |init obj|ect for |
|000014b0| 6e 6f 6e 2d 61 64 64 72 | 65 73 73 00 41 73 73 69 |non-addr|ess.Assi|
|000014c0| 67 6e 6d 65 6e 74 20 69 | 6e 74 6f 20 6e 6f 6e 2d |gnment i|nto non-|
|000014d0| 76 61 72 69 61 62 6c 65 | 00 00 41 73 73 69 67 6e |variable|..Assign|
|000014e0| 6d 65 6e 74 20 69 6e 74 | 6f 20 6e 6f 6e 2d 76 61 |ment int|o non-va|
|000014f0| 72 69 61 62 6c 65 00 00 | 53 77 61 70 70 69 6e 67 |riable..|Swapping|
|00001500| 20 6e 6f 6e 2d 76 61 72 | 69 61 62 6c 65 73 00 00 | non-var|iables..|
|00001510| 4e 6f 6e 2d 76 61 72 69 | 61 62 6c 65 20 66 6f 72 |Non-vari|able for|
|00001520| 20 71 75 6f 6d 6f 64 00 | 4e 6f 6e 2d 72 65 61 6c | quomod.|Non-real|
|00001530| 73 20 66 6f 72 20 71 75 | 6f 6d 6f 64 00 00 4e 6f |s for qu|omod..No|
|00001540| 6e 2d 6e 75 6d 65 72 69 | 63 73 20 66 6f 72 20 61 |n-numeri|cs for a|
|00001550| 6e 64 00 00 4e 6f 6e 2d | 6e 75 6d 65 72 69 63 73 |nd..Non-|numerics|
|00001560| 20 66 6f 72 20 6f 72 00 | 4e 6f 6e 2d 69 6e 74 65 | for or.|Non-inte|
|00001570| 67 72 61 6c 20 73 63 61 | 6c 69 6e 67 20 66 61 63 |gral sca|ling fac|
|00001580| 74 6f 72 00 56 65 72 79 | 20 6c 61 72 67 65 20 73 |tor.Very| large s|
|00001590| 63 61 6c 69 6e 67 20 66 | 61 63 74 6f 72 00 54 61 |caling f|actor.Ta|
|000015a0| 6b 69 6e 67 20 72 65 61 | 6c 20 70 61 72 74 20 6f |king rea|l part o|
|000015b0| 66 20 6e 6f 6e 2d 6e 75 | 6d 62 65 72 00 00 54 61 |f non-nu|mber..Ta|
|000015c0| 6b 69 6e 67 20 69 6d 61 | 67 69 6e 61 72 79 20 70 |king ima|ginary p|
|000015d0| 61 72 74 20 6f 66 20 6e | 6f 6e 2d 6e 75 6d 62 65 |art of n|on-numbe|
|000015e0| 72 00 46 61 73 74 20 69 | 6e 64 65 78 69 6e 67 20 |r.Fast i|ndexing |
|000015f0| 62 79 20 6e 6f 6e 2d 6e | 75 6d 62 65 72 00 46 61 |by non-n|umber.Fa|
|00001600| 73 74 20 69 6e 64 65 78 | 69 6e 67 20 62 79 20 6e |st index|ing by n|
|00001610| 6f 6e 2d 69 6e 74 65 67 | 65 72 00 00 49 6e 64 65 |on-integ|er..Inde|
|00001620| 78 20 6f 75 74 20 6f 66 | 20 72 61 6e 67 65 20 66 |x out of| range f|
|00001630| 6f 72 20 66 61 73 74 20 | 69 6e 64 65 78 69 6e 67 |or fast |indexing|
|00001640| 00 00 42 61 64 20 76 61 | 6c 75 65 20 66 6f 72 20 |..Bad va|lue for |
|00001650| 66 61 73 74 20 69 6e 64 | 65 78 69 6e 67 00 49 6e |fast ind|exing.In|
|00001660| 64 65 78 20 6f 75 74 20 | 6f 66 20 62 6f 75 6e 64 |dex out |of bound|
|00001670| 73 20 66 6f 72 20 6f 62 | 6a 65 63 74 00 00 49 6e |s for ob|ject..In|
|00001680| 64 65 78 20 6f 75 74 20 | 6f 66 20 62 6f 75 6e 64 |dex out |of bound|
|00001690| 73 20 66 6f 72 20 6d 61 | 74 72 69 78 00 00 49 6e |s for ma|trix..In|
|000016a0| 64 65 78 20 6f 75 74 20 | 6f 66 20 62 6f 75 6e 64 |dex out |of bound|
|000016b0| 73 20 66 6f 72 20 6c 69 | 73 74 00 00 42 61 64 20 |s for li|st..Bad |
|000016c0| 76 61 72 69 61 62 6c 65 | 20 74 79 70 65 20 66 6f |variable| type fo|
|000016d0| 72 20 66 61 73 74 20 69 | 6e 64 65 78 69 6e 67 00 |r fast i|ndexing.|
|000016e0| 42 61 64 20 76 61 6c 75 | 65 20 66 6f 72 20 73 67 |Bad valu|e for sg|
|000016f0| 6e 00 4e 75 6d 65 72 61 | 74 6f 72 20 6f 66 20 6e |n.Numera|tor of n|
|00001700| 6f 6e 2d 6e 75 6d 62 65 | 72 00 44 65 6e 6f 6d 69 |on-numbe|r.Denomi|
|00001710| 6e 61 74 6f 72 20 6f 66 | 20 6e 6f 6e 2d 6e 75 6d |nator of| non-num|
|00001720| 62 65 72 00 46 75 6e 63 | 74 69 6f 6e 20 22 25 73 |ber.Func|tion "%s|
|00001730| 22 20 69 73 20 75 6e 64 | 65 66 69 6e 65 64 00 00 |" is und|efined..|
|00001740| 50 72 65 69 6e 63 72 65 | 6d 65 6e 74 69 6e 67 20 |Preincre|menting |
|00001750| 6e 6f 6e 2d 76 61 72 69 | 61 62 6c 65 00 00 50 72 |non-vari|able..Pr|
|00001760| 65 64 65 63 72 65 6d 65 | 6e 74 69 6e 67 20 6e 6f |edecreme|nting no|
|00001770| 6e 2d 76 61 72 69 61 62 | 6c 65 00 00 50 6f 73 74 |n-variab|le..Post|
|00001780| 69 6e 63 72 65 6d 65 6e | 74 69 6e 67 20 6e 6f 6e |incremen|ting non|
|00001790| 2d 76 61 72 69 61 62 6c | 65 00 50 6f 73 74 64 65 |-variabl|e.Postde|
|000017a0| 63 72 65 6d 65 6e 74 69 | 6e 67 20 6e 6f 6e 2d 76 |crementi|ng non-v|
|000017b0| 61 72 69 61 62 6c 65 00 | 43 61 6c 63 75 6c 61 74 |ariable.|Calculat|
|000017c0| 69 6f 6e 20 61 62 6f 72 | 74 65 64 20 61 74 20 73 |ion abor|ted at s|
|000017d0| 74 61 74 65 6d 65 6e 74 | 20 62 6f 75 6e 64 61 72 |tatement| boundar|
|000017e0| 79 00 09 00 0a 00 0a 00 | 0a 00 0a 00 25 73 0a 00 |y.......|....%s..|
|000017f0| 25 73 00 00 71 75 69 74 | 20 73 74 61 74 65 6d 65 |%s..quit| stateme|
|00001800| 6e 74 20 65 78 65 63 75 | 74 65 64 00 4e 6f 6e 2d |nt execu|ted.Non-|
|00001810| 6e 75 6d 65 72 69 63 20 | 66 6f 72 20 65 70 73 69 |numeric |for epsi|
|00001820| 6c 6f 6e 00 4e 6f 6e 2d | 73 74 72 69 6e 67 20 66 |lon.Non-|string f|
|00001830| 6f 72 20 63 6f 6e 66 69 | 67 00 55 6e 6b 6e 6f 77 |or confi|g.Unknow|
|00001840| 6e 20 63 6f 6e 66 69 67 | 20 6e 61 6d 65 20 22 25 |n config| name "%|
|00001850| 73 22 00 00 4e 6f 6e 2d | 73 74 72 69 6e 67 20 66 |s"..Non-|string f|
|00001860| 6f 72 20 63 6f 6e 66 69 | 67 00 55 6e 6b 6e 6f 77 |or confi|g.Unknow|
|00001870| 6e 20 63 6f 6e 66 69 67 | 20 6e 61 6d 65 20 22 25 |n config| name "%|
|00001880| 73 22 00 00 22 25 73 22 | 3a 20 00 00 6c 69 6e 65 |s".."%s"|: ..line|
|00001890| 20 25 6c 64 3a 20 00 00 | 25 73 0a 00 4e 4f 50 00 | %ld: ..|%s..NOP.|
|000018a0| 4c 4f 43 41 4c 41 44 44 | 52 00 47 4c 4f 42 41 4c |LOCALADD|R.GLOBAL|
|000018b0| 41 44 44 52 00 00 50 41 | 52 41 4d 41 44 44 52 00 |ADDR..PA|RAMADDR.|
|000018c0| 4c 4f 43 41 4c 56 41 4c | 55 45 00 00 47 4c 4f 42 |LOCALVAL|UE..GLOB|
|000018d0| 41 4c 56 41 4c 55 45 00 | 50 41 52 41 4d 56 41 4c |ALVALUE.|PARAMVAL|
|000018e0| 55 45 00 00 4e 55 4d 42 | 45 52 00 00 49 4e 44 45 |UE..NUMB|ER..INDE|
|000018f0| 58 41 44 44 52 00 49 4e | 44 45 58 56 41 4c 55 45 |XADDR.IN|DEXVALUE|
|00001900| 00 00 41 53 53 49 47 4e | 00 00 41 44 44 00 53 55 |..ASSIGN|..ADD.SU|
|00001910| 42 00 4d 55 4c 00 44 49 | 56 00 4d 4f 44 00 53 41 |B.MUL.DI|V.MOD.SA|
|00001920| 56 45 00 00 4e 45 47 41 | 54 45 00 00 49 4e 56 45 |VE..NEGA|TE..INVE|
|00001930| 52 54 00 00 49 4e 54 00 | 46 52 41 43 00 00 4e 55 |RT..INT.|FRAC..NU|
|00001940| 4d 45 52 41 54 4f 52 00 | 44 45 4e 4f 4d 49 4e 41 |MERATOR.|DENOMINA|
|00001950| 54 4f 52 00 44 55 50 4c | 49 43 41 54 45 00 50 4f |TOR.DUPL|ICATE.PO|
|00001960| 50 00 52 45 54 55 52 4e | 00 00 4a 55 4d 50 45 51 |P.RETURN|..JUMPEQ|
|00001970| 00 00 4a 55 4d 50 4e 45 | 00 00 4a 55 4d 50 00 00 |..JUMPNE|..JUMP..|
|00001980| 55 53 45 52 43 41 4c 4c | 00 00 47 45 54 56 41 4c |USERCALL|..GETVAL|
|00001990| 55 45 00 00 45 51 00 00 | 4e 45 00 00 4c 45 00 00 |UE..EQ..|NE..LE..|
|000019a0| 47 45 00 00 4c 54 00 00 | 47 54 00 00 50 52 45 49 |GE..LT..|GT..PREI|
|000019b0| 4e 43 00 00 50 52 45 44 | 45 43 00 00 50 4f 53 54 |NC..PRED|EC..POST|
|000019c0| 49 4e 43 00 50 4f 53 54 | 44 45 43 00 44 45 42 55 |INC.POST|DEC.DEBU|
|000019d0| 47 00 50 52 49 4e 54 00 | 41 53 53 49 47 4e 50 4f |G.PRINT.|ASSIGNPO|
|000019e0| 50 00 5a 45 52 4f 00 00 | 4f 4e 45 00 50 52 49 4e |P.ZERO..|ONE.PRIN|
|000019f0| 54 45 4f 4c 00 00 50 52 | 49 4e 54 53 50 41 43 45 |TEOL..PR|INTSPACE|
|00001a00| 00 00 50 52 49 4e 54 53 | 54 52 00 00 44 55 50 56 |..PRINTS|TR..DUPV|
|00001a10| 41 4c 55 45 00 00 4f 4c | 44 56 41 4c 55 45 00 00 |ALUE..OL|DVALUE..|
|00001a20| 51 55 4f 00 50 4f 57 45 | 52 00 51 55 49 54 00 00 |QUO.POWE|R.QUIT..|
|00001a30| 43 41 4c 4c 00 00 47 45 | 54 45 50 53 49 4c 4f 4e |CALL..GE|TEPSILON|
|00001a40| 00 00 41 4e 44 00 4f 52 | 00 00 4e 4f 54 00 41 42 |..AND.OR|..NOT.AB|
|00001a50| 53 00 53 47 4e 00 49 53 | 49 4e 54 00 43 4f 4e 44 |S.SGN.IS|INT.COND|
|00001a60| 4f 52 4a 55 4d 50 00 00 | 43 4f 4e 44 41 4e 44 4a |ORJUMP..|CONDANDJ|
|00001a70| 55 4d 50 00 53 51 55 41 | 52 45 00 00 53 54 52 49 |UMP.SQUA|RE..STRI|
|00001a80| 4e 47 00 00 49 53 4e 55 | 4d 00 55 4e 44 45 46 00 |NG..ISNU|M.UNDEF.|
|00001a90| 49 53 4e 55 4c 4c 00 00 | 41 52 47 56 41 4c 55 45 |ISNULL..|ARGVALUE|
|00001aa0| 00 00 4d 41 54 49 4e 49 | 54 00 49 53 4d 41 54 00 |..MATINI|T.ISMAT.|
|00001ab0| 49 53 53 54 52 00 47 45 | 54 43 4f 4e 46 49 47 00 |ISSTR.GE|TCONFIG.|
|00001ac0| 4c 45 46 54 53 48 49 46 | 54 00 52 49 47 48 54 53 |LEFTSHIF|T.RIGHTS|
|00001ad0| 48 49 46 54 00 00 43 41 | 53 45 4a 55 4d 50 00 00 |HIFT..CA|SEJUMP..|
|00001ae0| 49 53 4f 44 44 00 49 53 | 45 56 45 4e 00 00 46 49 |ISODD.IS|EVEN..FI|
|00001af0| 41 44 44 52 00 00 46 49 | 56 41 4c 55 45 00 49 53 |ADDR..FI|VALUE.IS|
|00001b00| 52 45 41 4c 00 00 49 4d | 41 47 49 4e 41 52 59 00 |REAL..IM|AGINARY.|
|00001b10| 52 45 00 00 49 4d 00 00 | 43 4f 4e 4a 55 47 41 54 |RE..IM..|CONJUGAT|
|00001b20| 45 00 4f 42 4a 49 4e 49 | 54 00 49 53 4f 42 4a 00 |E.OBJINI|T.ISOBJ.|
|00001b30| 4e 4f 52 4d 00 00 45 4c | 45 4d 41 44 44 52 00 00 |NORM..EL|EMADDR..|
|00001b40| 45 4c 45 4d 56 41 4c 55 | 45 00 49 53 54 59 50 45 |ELEMVALU|E.ISTYPE|
|00001b50| 00 00 53 43 41 4c 45 00 | 49 53 4c 49 53 54 00 00 |..SCALE.|ISLIST..|
|00001b60| 53 57 41 50 00 00 49 53 | 53 49 4d 50 4c 45 00 00 |SWAP..IS|SIMPLE..|
|00001b70| 43 4d 50 00 51 55 4f 4d | 4f 44 00 00 53 45 54 43 |CMP.QUOM|OD..SETC|
|00001b80| 4f 4e 46 49 47 00 53 45 | 54 45 50 53 49 4c 4f 4e |ONFIG.SE|TEPSILON|
|00001b90| 00 00 50 52 49 4e 54 52 | 45 53 55 4c 54 00 49 53 |..PRINTR|ESULT.IS|
|00001ba0| 46 49 4c 45 00 00 4e 65 | 67 61 74 69 76 65 20 61 |FILE..Ne|gative a|
|00001bb0| 72 67 75 6d 65 6e 74 20 | 66 6f 72 20 66 61 63 74 |rgument |for fact|
|00001bc0| 6f 72 69 61 6c 00 56 65 | 72 79 20 6c 61 72 67 65 |orial.Ve|ry large|
|00001bd0| 20 66 61 63 74 6f 72 69 | 61 6c 00 00 4e 65 67 61 | factori|al..Nega|
|00001be0| 74 69 76 65 20 61 72 67 | 75 6d 65 6e 74 20 66 6f |tive arg|ument fo|
|00001bf0| 72 20 66 61 63 74 6f 72 | 69 61 6c 00 56 65 72 79 |r factor|ial.Very|
|00001c00| 20 6c 61 72 67 65 20 66 | 61 63 74 6f 72 69 61 6c | large f|actorial|
|00001c10| 00 00 4e 6f 6e 2d 70 6f | 73 69 74 69 76 65 20 61 |..Non-po|sitive a|
|00001c20| 72 67 75 6d 65 6e 74 20 | 66 6f 72 20 6c 63 6d 66 |rgument |for lcmf|
|00001c30| 61 63 74 00 56 65 72 79 | 20 6c 61 72 67 65 20 6c |act.Very| large l|
|00001c40| 63 6d 66 61 63 74 00 00 | 4e 65 67 61 74 69 76 65 |cmfact..|Negative|
|00001c50| 20 61 72 67 75 6d 65 6e | 74 20 66 6f 72 20 70 65 | argumen|t for pe|
|00001c60| 72 6d 75 74 61 74 69 6f | 6e 00 53 65 63 6f 6e 64 |rmutatio|n.Second|
|00001c70| 20 61 72 67 20 6c 61 72 | 67 65 72 20 74 68 61 6e | arg lar|ger than|
|00001c80| 20 66 69 72 73 74 20 69 | 6e 20 70 65 72 6d 75 74 | first i|n permut|
|00001c90| 61 74 69 6f 6e 00 56 65 | 72 79 20 6c 61 72 67 65 |ation.Ve|ry large|
|00001ca0| 20 70 65 72 6d 75 74 61 | 74 69 6f 6e 00 00 4e 65 | permuta|tion..Ne|
|00001cb0| 67 61 74 69 76 65 20 61 | 72 67 75 6d 65 6e 74 20 |gative a|rgument |
|00001cc0| 66 6f 72 20 63 6f 6d 62 | 69 6e 61 74 6f 72 69 61 |for comb|inatoria|
|00001cd0| 6c 00 53 65 63 6f 6e 64 | 20 61 72 67 20 6c 61 72 |l.Second| arg lar|
|00001ce0| 67 65 72 20 74 68 61 6e | 20 66 69 72 73 74 20 66 |ger than| first f|
|00001cf0| 6f 72 20 63 6f 6d 62 69 | 6e 61 74 6f 72 69 61 6c |or combi|natorial|
|00001d00| 00 00 56 65 72 79 20 6c | 61 72 67 65 20 63 6f 6d |..Very l|arge com|
|00001d10| 62 69 6e 61 74 6f 72 69 | 61 6c 00 00 56 65 72 79 |binatori|al..Very|
|00001d20| 20 6c 61 72 67 65 20 46 | 69 62 6f 6e 61 63 63 69 | large F|ibonacci|
|00001d30| 20 6e 75 6d 62 65 72 00 | 5a 65 72 6f 20 72 61 69 | number.|Zero rai|
|00001d40| 73 65 64 20 74 6f 20 7a | 65 72 6f 20 70 6f 77 65 |sed to z|ero powe|
|00001d50| 72 00 52 61 69 73 69 6e | 67 20 74 6f 20 76 65 72 |r.Raisin|g to ver|
|00001d60| 79 20 6c 61 72 67 65 20 | 70 6f 77 65 72 00 42 61 |y large |power.Ba|
|00001d70| 64 20 61 72 67 75 6d 65 | 6e 74 73 20 66 6f 72 20 |d argume|nts for |
|00001d80| 6c 6f 67 00 4e 6f 6e 2d | 70 6f 73 69 74 69 76 65 |log.Non-|positive|
|00001d90| 20 6e 75 6d 62 65 72 20 | 66 6f 72 20 6c 6f 67 31 | number |for log1|
|00001da0| 30 00 42 61 64 20 61 72 | 67 75 6d 65 6e 74 20 66 |0.Bad ar|gument f|
|00001db0| 6f 72 20 66 61 63 72 65 | 6d 00 53 71 75 61 72 65 |or facre|m.Square|
|00001dc0| 20 72 6f 6f 74 20 6f 66 | 20 6e 65 67 61 74 69 76 | root of| negativ|
|00001dd0| 65 20 6e 75 6d 62 65 72 | 00 00 45 76 65 6e 20 72 |e number|..Even r|
|00001de0| 6f 6f 74 20 6f 66 20 6e | 65 67 61 74 69 76 65 20 |oot of n|egative |
|00001df0| 6e 75 6d 62 65 72 00 00 | 4e 6f 6e 2d 70 6f 73 69 |number..|Non-posi|
|00001e00| 74 69 76 65 20 72 6f 6f | 74 00 00 02 00 00 00 01 |tive roo|t.......|
|00001e10| 00 0a ff ff 8c c4 00 00 | 00 01 00 00 ff ff 8c c6 |........|........|
|00001e20| 00 00 00 01 00 00 ff ff | 8c c8 00 00 00 01 00 00 |........|........|
|00001e30| ff ff 8d 96 ff ff 8d aa | 00 00 44 69 76 69 73 69 |........|..Divisi|
|00001e40| 6f 6e 20 62 79 20 7a 65 | 72 6f 00 00 44 69 76 69 |on by ze|ro..Divi|
|00001e50| 73 69 6f 6e 20 62 79 20 | 7a 65 72 6f 00 00 44 69 |sion by |zero..Di|
|00001e60| 76 69 73 69 6f 6e 20 62 | 79 20 7a 65 72 6f 00 00 |vision b|y zero..|
|00001e70| 44 69 76 69 73 69 6f 6e | 20 62 79 20 7a 65 72 6f |Division| by zero|
|00001e80| 00 00 4e 6f 6e 2d 70 6f | 73 69 74 69 76 65 20 6d |..Non-po|sitive m|
|00001e90| 6f 64 75 6c 75 73 00 00 | 44 69 76 69 73 69 6f 6e |odulus..|Division|
|00001ea0| 20 62 79 20 7a 65 72 6f | 00 00 4e 6f 6e 2d 70 6f | by zero|..Non-po|
|00001eb0| 73 69 74 69 76 65 20 6d | 6f 64 75 6c 75 73 00 00 |sitive m|odulus..|
|00001ec0| 44 69 76 69 73 69 6f 6e | 20 62 79 20 7a 65 72 6f |Division| by zero|
|00001ed0| 00 00 43 61 6c 63 75 6c | 61 74 69 6f 6e 20 61 62 |..Calcul|ation ab|
|00001ee0| 6f 72 74 65 64 00 4e 6f | 74 20 65 6e 6f 75 67 68 |orted.No|t enough|
|00001ef0| 20 6d 65 6d 6f 72 79 00 | 00 00 00 28 00 00 00 32 | memory.|...(...2|
|00001f00| 00 00 4d 6f 64 20 6f 66 | 20 6e 6f 6e 2d 70 6f 73 |..Mod of| non-pos|
|00001f10| 69 74 69 76 65 20 69 6e | 74 65 67 65 72 00 4e 6f |itive in|teger.No|
|00001f20| 6e 2d 70 6f 73 69 74 69 | 76 65 20 6d 6f 64 75 6c |n-positi|ve modul|
|00001f30| 75 73 20 69 6e 20 7a 63 | 6d 70 6d 6f 64 00 4e 6f |us in zc|mpmod.No|
|00001f40| 6e 2d 70 6f 73 69 74 69 | 76 65 20 6d 6f 64 75 6c |n-positi|ve modul|
|00001f50| 75 73 20 69 6e 20 7a 70 | 6f 77 65 72 6d 6f 64 00 |us in zp|owermod.|
|00001f60| 4e 65 67 61 74 69 76 65 | 20 70 6f 77 65 72 20 69 |Negative| power i|
|00001f70| 6e 20 7a 70 6f 77 65 72 | 6d 6f 64 00 52 45 44 43 |n zpower|mod.REDC|
|00001f80| 20 72 65 71 75 69 72 65 | 73 20 70 6f 73 69 74 69 | require|s positi|
|00001f90| 76 65 20 6f 64 64 20 6d | 6f 64 75 6c 75 73 00 00 |ve odd m|odulus..|
|00001fa0| 43 61 6e 6e 6f 74 20 61 | 6c 6c 6f 63 61 74 65 20 |Cannot a|llocate |
|00001fb0| 52 45 44 43 20 73 74 72 | 75 63 74 75 72 65 00 00 |REDC str|ucture..|
|00001fc0| 4e 65 67 61 74 69 76 65 | 20 6e 75 6d 62 65 72 20 |Negative| number |
|00001fd0| 66 6f 72 20 7a 72 65 64 | 63 00 4e 65 67 61 74 69 |for zred|c.Negati|
|00001fe0| 76 65 20 6f 72 20 74 6f | 6f 20 6c 61 72 67 65 20 |ve or to|o large |
|00001ff0| 6e 75 6d 62 65 72 20 69 | 6e 20 7a 72 65 64 63 6d |number i|n zredcm|
|00002000| 75 6c 00 00 4e 65 67 61 | 74 69 76 65 20 6e 75 6d |ul..Nega|tive num|
|00002010| 62 65 72 20 69 6e 20 7a | 72 65 64 63 73 71 75 61 |ber in z|redcsqua|
|00002020| 72 65 00 00 4e 65 67 61 | 74 69 76 65 20 6e 75 6d |re..Nega|tive num|
|00002030| 62 65 72 20 69 6e 20 7a | 72 65 64 63 70 6f 77 65 |ber in z|redcpowe|
|00002040| 72 00 4e 65 67 61 74 69 | 76 65 20 70 6f 77 65 72 |r.Negati|ve power|
|00002050| 20 69 6e 20 7a 72 65 64 | 63 70 6f 77 65 72 00 00 | in zred|cpower..|
|00002060| 45 70 73 69 6c 6f 6e 20 | 76 61 6c 75 65 20 6d 75 |Epsilon |value mu|
|00002070| 73 74 20 62 65 20 62 65 | 74 77 65 65 6e 20 7a 65 |st be be|tween ze|
|00002080| 72 6f 20 61 6e 64 20 6f | 6e 65 00 00 4e 6f 6e 2d |ro and o|ne..Non-|
|00002090| 69 6e 74 65 67 65 72 73 | 20 66 6f 72 20 6d 69 6e |integers| for min|
|000020a0| 76 00 4e 6f 6e 2d 69 6e | 74 65 67 65 72 73 20 66 |v.Non-in|tegers f|
|000020b0| 6f 72 20 70 6f 77 65 72 | 6d 6f 64 00 52 61 69 73 |or power|mod.Rais|
|000020c0| 69 6e 67 20 6e 75 6d 62 | 65 72 20 74 6f 20 66 72 |ing numb|er to fr|
|000020d0| 61 63 74 69 6f 6e 61 6c | 20 70 6f 77 65 72 00 00 |actional| power..|
|000020e0| 5a 65 72 6f 20 72 61 69 | 73 65 64 20 74 6f 20 6e |Zero rai|sed to n|
|000020f0| 6f 6e 2d 70 6f 73 69 74 | 69 76 65 20 70 6f 77 65 |on-posit|ive powe|
|00002100| 72 00 42 61 64 20 65 70 | 73 69 6c 6f 6e 20 76 61 |r.Bad ep|silon va|
|00002110| 6c 75 65 20 66 6f 72 20 | 68 79 70 6f 74 00 42 61 |lue for |hypot.Ba|
|00002120| 64 20 65 70 73 69 6c 6f | 6e 20 76 61 6c 75 65 20 |d epsilo|n value |
|00002130| 66 6f 72 20 6c 65 67 74 | 6f 6c 65 67 00 00 4c 65 |for legt|oleg..Le|
|00002140| 67 20 74 6f 6f 20 6c 61 | 72 67 65 20 69 6e 20 6c |g too la|rge in l|
|00002150| 65 67 74 6f 6c 65 67 00 | 53 71 75 61 72 65 20 72 |egtoleg.|Square r|
|00002160| 6f 6f 74 20 6f 66 20 6e | 65 67 61 74 69 76 65 20 |oot of n|egative |
|00002170| 6e 75 6d 62 65 72 00 00 | 42 61 64 20 65 70 73 69 |number..|Bad epsi|
|00002180| 6c 6f 6e 20 76 61 6c 75 | 65 20 66 6f 72 20 73 71 |lon valu|e for sq|
|00002190| 72 74 00 00 53 71 75 61 | 72 65 20 72 6f 6f 74 20 |rt..Squa|re root |
|000021a0| 6f 66 20 6e 65 67 61 74 | 69 76 65 20 6e 75 6d 62 |of negat|ive numb|
|000021b0| 65 72 00 00 54 61 6b 69 | 6e 67 20 6e 75 6d 62 65 |er..Taki|ng numbe|
|000021c0| 72 20 74 6f 20 62 61 64 | 20 72 6f 6f 74 20 76 61 |r to bad| root va|
|000021d0| 6c 75 65 00 4e 6f 6e 2d | 70 6f 73 69 74 69 76 65 |lue.Non-|positive|
|000021e0| 20 6e 75 6d 62 65 72 20 | 66 6f 72 20 6c 6f 67 32 | number |for log2|
|000021f0| 00 00 4e 6f 6e 2d 70 6f | 73 69 74 69 76 65 20 6e |..Non-po|sitive n|
|00002200| 75 6d 62 65 72 20 66 6f | 72 20 6c 6f 67 31 30 00 |umber fo|r log10.|
|00002210| 4e 6f 6e 2d 69 6e 74 65 | 67 72 61 6c 20 66 61 63 |Non-inte|gral fac|
|00002220| 74 6f 72 69 61 6c 00 00 | 4e 6f 6e 2d 69 6e 74 65 |torial..|Non-inte|
|00002230| 67 72 61 6c 20 66 61 63 | 74 6f 72 69 61 6c 00 00 |gral fac|torial..|
|00002240| 4e 6f 6e 2d 69 6e 74 65 | 67 72 61 6c 20 6c 63 6d |Non-inte|gral lcm|
|00002250| 66 61 63 74 00 00 4e 6f | 6e 2d 69 6e 74 65 67 72 |fact..No|n-integr|
|00002260| 61 6c 20 61 72 67 75 6d | 65 6e 74 73 20 66 6f 72 |al argum|ents for|
|00002270| 20 70 65 72 6d 75 74 61 | 74 69 6f 6e 00 00 4e 6f | permuta|tion..No|
|00002280| 6e 2d 69 6e 74 65 67 72 | 61 6c 20 61 72 67 75 6d |n-integr|al argum|
|00002290| 65 6e 74 73 20 66 6f 72 | 20 63 6f 6d 62 69 6e 61 |ents for| combina|
|000022a0| 74 6f 72 69 61 6c 00 00 | 4e 6f 6e 2d 69 6e 74 65 |torial..|Non-inte|
|000022b0| 67 72 61 6c 20 61 72 67 | 75 6d 65 6e 74 73 20 66 |gral arg|uments f|
|000022c0| 6f 72 20 6a 61 63 6f 62 | 69 00 4e 6f 6e 2d 69 6e |or jacob|i.Non-in|
|000022d0| 74 65 67 72 61 6c 20 46 | 69 62 6f 6e 61 63 63 69 |tegral F|ibonacci|
|000022e0| 20 6e 75 6d 62 65 72 00 | 42 61 64 20 6e 75 6d 62 | number.|Bad numb|
|000022f0| 65 72 20 6f 66 20 70 6c | 61 63 65 73 20 66 6f 72 |er of pl|aces for|
|00002300| 20 71 74 72 75 6e 63 00 | 4e 65 67 61 74 69 76 65 | qtrunc.|Negative|
|00002310| 20 70 6c 61 63 65 73 20 | 66 6f 72 20 71 72 6f 75 | places |for qrou|
|00002320| 6e 64 00 00 42 61 64 20 | 6e 75 6d 62 65 72 20 6f |nd..Bad |number o|
|00002330| 66 20 70 6c 61 63 65 73 | 20 66 6f 72 20 71 74 72 |f places| for qtr|
|00002340| 75 6e 63 00 4e 65 67 61 | 74 69 76 65 20 70 6c 61 |unc.Nega|tive pla|
|00002350| 63 65 73 20 66 6f 72 20 | 71 62 72 6f 75 6e 64 00 |ces for |qbround.|
|00002360| 42 61 64 20 65 70 73 69 | 6c 6f 6e 20 76 61 6c 75 |Bad epsi|lon valu|
|00002370| 65 20 66 6f 72 20 71 62 | 61 70 70 72 00 00 4e 65 |e for qb|appr..Ne|
|00002380| 67 61 74 69 76 65 20 65 | 70 73 69 6c 6f 6e 20 66 |gative e|psilon f|
|00002390| 6f 72 20 63 66 61 70 70 | 72 00 4e 65 67 61 74 69 |or cfapp|r.Negati|
|000023a0| 76 65 20 65 70 73 69 6c | 6f 6e 20 66 6f 72 20 6e |ve epsil|on for n|
|000023b0| 65 61 72 00 4e 6f 6e 2d | 69 6e 74 65 67 65 72 73 |ear.Non-|integers|
|000023c0| 20 66 6f 72 20 67 63 64 | 00 00 4e 6f 6e 2d 69 6e | for gcd|..Non-in|
|000023d0| 74 65 67 65 72 73 20 66 | 6f 72 20 6c 63 6d 00 00 |tegers f|or lcm..|
|000023e0| 4e 6f 6e 2d 69 6e 74 65 | 67 65 72 73 20 66 6f 72 |Non-inte|gers for|
|000023f0| 20 66 61 63 74 6f 72 20 | 72 65 6d 6f 76 61 6c 00 | factor |removal.|
|00002400| 4e 6f 6e 2d 69 6e 74 65 | 67 65 72 73 20 66 6f 72 |Non-inte|gers for|
|00002410| 20 67 63 64 72 65 6d 00 | 4e 6f 6e 2d 69 6e 74 65 | gcdrem.|Non-inte|
|00002420| 67 65 72 73 20 66 6f 72 | 20 6c 6f 77 66 61 63 74 |gers for| lowfact|
|00002430| 6f 72 00 00 42 61 64 20 | 61 72 67 75 6d 65 6e 74 |or..Bad |argument|
|00002440| 73 20 66 6f 72 20 71 70 | 72 69 6d 65 74 65 73 74 |s for qp|rimetest|
|00002450| 00 00 ff ff 8c c4 00 00 | 00 01 00 00 ff ff 8c c6 |........|........|
|00002460| 00 00 00 01 00 00 00 01 | ff ff 8c c6 00 00 00 01 |........|........|
|00002470| 00 00 ff ff 8c c6 00 00 | 00 01 00 00 00 01 ff ff |........|........|
|00002480| 8c c2 00 00 00 01 00 00 | ff ff 8c c6 00 00 00 01 |........|........|
|00002490| 00 00 00 01 ff ff 8c c8 | 00 00 00 01 00 00 ff ff |........|........|
|000024a0| 8c c6 00 00 00 01 00 00 | 00 01 ff ff 8c c6 00 00 |........|........|
|000024b0| 00 01 00 01 ff ff 8c c6 | 00 00 00 01 00 00 00 01 |........|........|
|000024c0| ff ff 8c c6 00 00 00 01 | 00 00 ff ff 8c c2 00 00 |........|........|
|000024d0| 00 01 00 00 00 01 ff ff | 94 98 00 00 44 69 76 69 |........|....Divi|
|000024e0| 73 69 6f 6e 20 62 79 20 | 7a 65 72 6f 00 00 44 69 |sion by |zero..Di|
|000024f0| 76 69 73 69 6f 6e 20 62 | 79 20 7a 65 72 6f 00 00 |vision b|y zero..|
|00002500| 44 69 76 69 73 69 6f 6e | 20 62 79 20 7a 65 72 6f |Division| by zero|
|00002510| 00 00 44 69 76 69 73 69 | 6f 6e 20 62 79 20 7a 65 |..Divisi|on by ze|
|00002520| 72 6f 00 00 44 69 76 69 | 73 69 6f 6e 20 62 79 20 |ro..Divi|sion by |
|00002530| 7a 65 72 6f 00 00 53 68 | 69 66 74 20 6f 66 20 6e |zero..Sh|ift of n|
|00002540| 6f 6e 2d 69 6e 74 65 67 | 65 72 00 00 56 65 72 79 |on-integ|er..Very|
|00002550| 20 6c 61 72 67 65 20 73 | 63 61 6c 65 20 76 61 6c | large s|cale val|
|00002560| 75 65 00 00 4e 6f 6e 2d | 69 6e 74 65 67 65 72 73 |ue..Non-|integers|
|00002570| 20 66 6f 72 20 6c 6f 67 | 69 63 61 6c 20 6f 72 00 | for log|ical or.|
|00002580| 4e 6f 6e 2d 69 6e 74 65 | 67 65 72 73 20 66 6f 72 |Non-inte|gers for|
|00002590| 20 6c 6f 67 69 63 61 6c | 20 61 6e 64 00 00 4e 6f | logical| and..No|
|000025a0| 6e 2d 69 6e 74 65 67 65 | 72 73 20 66 6f 72 20 6c |n-intege|rs for l|
|000025b0| 6f 67 69 63 61 6c 20 78 | 6f 72 00 00 4e 6f 74 20 |ogical x|or..Not |
|000025c0| 65 6e 6f 75 67 68 20 6d | 65 6d 6f 72 79 00 00 00 |enough m|emory...|
|000025d0| 4e 6f 6e 2d 70 6f 73 69 | 74 69 76 65 20 6d 6f 64 |Non-posi|tive mod|
|000025e0| 75 6c 75 73 00 00 4e 6f | 6e 2d 70 6f 73 69 74 69 |ulus..No|n-positi|
|000025f0| 76 65 20 6d 6f 64 75 6c | 75 73 00 00 4e 6f 6e 2d |ve modul|us..Non-|
|00002600| 70 6f 73 69 74 69 76 65 | 20 6d 6f 64 75 6c 75 73 |positive| modulus|
|00002610| 00 00 4e 6f 6e 2d 69 6e | 74 65 67 65 72 73 20 66 |..Non-in|tegers f|
|00002620| 6f 72 20 71 6d 69 6e 6d | 6f 64 00 00 4e 6f 6e 2d |or qminm|od..Non-|
|00002630| 70 6f 73 69 74 69 76 65 | 20 6d 6f 64 75 6c 75 73 |positive| modulus|
|00002640| 00 00 4e 6f 6e 2d 69 6e | 74 65 67 65 72 73 20 66 |..Non-in|tegers f|
|00002650| 6f 72 20 71 63 6d 70 6d | 6f 64 00 00 4e 6f 6e 2d |or qcmpm|od..Non-|
|00002660| 69 6e 74 65 67 65 72 20 | 66 6f 72 20 71 72 65 64 |integer |for qred|
|00002670| 63 69 6e 00 4e 6f 6e 2d | 70 6f 73 69 74 69 76 65 |cin.Non-|positive|
|00002680| 20 69 6e 74 65 67 65 72 | 20 72 65 71 75 69 72 65 | integer| require|
|00002690| 64 20 66 6f 72 20 71 72 | 65 64 63 6f 75 74 00 00 |d for qr|edcout..|
|000026a0| 4e 6f 6e 2d 70 6f 73 69 | 74 69 76 65 20 69 6e 74 |Non-posi|tive int|
|000026b0| 65 67 65 72 73 20 72 65 | 71 75 69 72 65 64 20 66 |egers re|quired f|
|000026c0| 6f 72 20 71 72 65 64 63 | 6d 75 6c 00 4e 6f 6e 2d |or qredc|mul.Non-|
|000026d0| 70 6f 73 69 74 69 76 65 | 20 69 6e 74 65 67 65 72 |positive| integer|
|000026e0| 20 72 65 71 75 69 72 65 | 64 20 66 6f 72 20 71 72 | require|d for qr|
|000026f0| 65 64 63 73 71 75 61 72 | 65 00 4e 6f 6e 2d 70 6f |edcsquar|e.Non-po|
|00002700| 73 69 74 69 76 65 20 69 | 6e 74 65 67 65 72 73 20 |sitive i|ntegers |
|00002710| 72 65 71 75 69 72 65 64 | 20 66 6f 72 20 71 72 65 |required| for qre|
|00002720| 64 63 70 6f 77 65 72 00 | 52 45 44 43 20 6d 6f 64 |dcpower.|REDC mod|
|00002730| 75 6c 75 73 20 6d 75 73 | 74 20 62 65 20 70 6f 73 |ulus mus|t be pos|
|00002740| 69 74 69 76 65 20 6f 64 | 64 20 69 6e 74 65 67 65 |itive od|d intege|
|00002750| 72 00 00 00 49 6c 6c 65 | 67 61 6c 20 65 70 73 69 |r...Ille|gal epsi|
|00002760| 6c 6f 6e 20 76 61 6c 75 | 65 20 66 6f 72 20 63 6f |lon valu|e for co|
|00002770| 73 69 6e 65 00 00 49 6c | 6c 65 67 61 6c 20 65 70 |sine..Il|legal ep|
|00002780| 73 69 6c 6f 6e 20 76 61 | 6c 75 65 20 66 6f 72 20 |silon va|lue for |
|00002790| 73 69 6e 65 00 00 49 6c | 6c 65 67 61 6c 20 65 70 |sine..Il|legal ep|
|000027a0| 73 69 6c 6f 6e 20 76 61 | 6c 75 65 20 66 6f 72 20 |silon va|lue for |
|000027b0| 74 61 6e 67 65 6e 74 00 | 49 6c 6c 65 67 61 6c 20 |tangent.|Illegal |
|000027c0| 65 70 73 69 6c 6f 6e 20 | 76 61 6c 75 65 20 66 6f |epsilon |value fo|
|000027d0| 72 20 61 72 63 73 69 6e | 65 00 41 72 67 75 6d 65 |r arcsin|e.Argume|
|000027e0| 6e 74 20 74 6f 6f 20 6c | 61 72 67 65 20 66 6f 72 |nt too l|arge for|
|000027f0| 20 61 73 69 6e 00 49 6c | 6c 65 67 61 6c 20 65 70 | asin.Il|legal ep|
|00002800| 73 69 6c 6f 6e 20 76 61 | 6c 75 65 20 66 6f 72 20 |silon va|lue for |
|00002810| 61 72 63 63 6f 73 69 6e | 65 00 41 72 67 75 6d 65 |arccosin|e.Argume|
|00002820| 6e 74 20 74 6f 6f 20 6c | 61 72 67 65 20 66 6f 72 |nt too l|arge for|
|00002830| 20 61 63 6f 73 00 49 6c | 6c 65 67 61 6c 20 65 70 | acos.Il|legal ep|
|00002840| 73 69 6c 6f 6e 20 76 61 | 6c 75 65 20 66 6f 72 20 |silon va|lue for |
|00002850| 61 72 63 74 61 6e 67 65 | 6e 74 00 00 49 6c 6c 65 |arctange|nt..Ille|
|00002860| 67 61 6c 20 65 70 73 69 | 6c 6f 6e 20 76 61 6c 75 |gal epsi|lon valu|
|00002870| 65 20 66 6f 72 20 61 74 | 61 6e 32 00 5a 65 72 6f |e for at|an2.Zero|
|00002880| 20 63 6f 6f 72 64 69 6e | 61 74 65 73 20 66 6f 72 | coordin|ates for|
|00002890| 20 61 74 61 6e 32 00 00 | 42 61 64 20 65 70 73 69 | atan2..|Bad epsi|
|000028a0| 6c 6f 6e 20 76 61 6c 75 | 65 20 66 6f 72 20 70 69 |lon valu|e for pi|
|000028b0| 00 00 49 6c 6c 65 67 61 | 6c 20 65 70 73 69 6c 6f |..Illega|l epsilo|
|000028c0| 6e 20 76 61 6c 75 65 20 | 66 6f 72 20 65 78 70 00 |n value |for exp.|
|000028d0| 56 65 72 79 20 6c 61 72 | 67 65 20 61 72 67 75 6d |Very lar|ge argum|
|000028e0| 65 6e 74 20 66 6f 72 20 | 65 78 70 00 6c 6f 67 20 |ent for |exp.log |
|000028f0| 6f 66 20 6e 6f 6e 2d 70 | 6f 73 69 74 69 76 65 20 |of non-p|ositive |
|00002900| 6e 75 6d 62 65 72 00 00 | 49 6c 6c 65 67 61 6c 20 |number..|Illegal |
|00002910| 65 70 73 69 6c 6f 6e 20 | 66 6f 72 20 6c 6e 00 00 |epsilon |for ln..|
|00002920| 54 61 6b 69 6e 67 20 62 | 61 64 20 72 6f 6f 74 20 |Taking b|ad root |
|00002930| 6f 66 20 6e 75 6d 62 65 | 72 00 54 61 6b 69 6e 67 |of numbe|r.Taking|
|00002940| 20 65 76 65 6e 20 72 6f | 6f 74 20 6f 66 20 6e 65 | even ro|ot of ne|
|00002950| 67 61 74 69 76 65 20 6e | 75 6d 62 65 72 00 49 6c |gative n|umber.Il|
|00002960| 6c 65 67 61 6c 20 65 70 | 73 69 6c 6f 6e 20 76 61 |legal ep|silon va|
|00002970| 6c 75 65 20 66 6f 72 20 | 65 78 70 00 56 65 72 79 |lue for |exp.Very|
|00002980| 20 6c 61 72 67 65 20 61 | 72 67 75 6d 65 6e 74 20 | large a|rgument |
|00002990| 66 6f 72 20 65 78 70 00 | 49 6c 6c 65 67 61 6c 20 |for exp.|Illegal |
|000029a0| 65 70 73 69 6c 6f 6e 20 | 76 61 6c 75 65 20 66 6f |epsilon |value fo|
|000029b0| 72 20 73 69 6e 68 00 00 | 49 6c 6c 65 67 61 6c 20 |r sinh..|Illegal |
|000029c0| 65 70 73 69 6c 6f 6e 20 | 76 61 6c 75 65 20 66 6f |epsilon |value fo|
|000029d0| 72 20 74 61 6e 68 00 00 | 49 6c 6c 65 67 61 6c 20 |r tanh..|Illegal |
|000029e0| 65 70 73 69 6c 6f 6e 20 | 76 61 6c 75 65 20 66 6f |epsilon |value fo|
|000029f0| 72 20 61 63 6f 73 68 00 | 41 72 67 75 6d 65 6e 74 |r acosh.|Argument|
|00002a00| 20 6c 65 73 73 20 74 68 | 61 6e 20 6f 6e 65 20 66 | less th|an one f|
|00002a10| 6f 72 20 61 63 6f 73 68 | 00 00 49 6c 6c 65 67 61 |or acosh|..Illega|
|00002a20| 6c 20 65 70 73 69 6c 6f | 6e 20 76 61 6c 75 65 20 |l epsilo|n value |
|00002a30| 66 6f 72 20 61 73 69 6e | 68 00 49 6c 6c 65 67 61 |for asin|h.Illega|
|00002a40| 6c 20 65 70 73 69 6c 6f | 6e 20 76 61 6c 75 65 20 |l epsilo|n value |
|00002a50| 66 6f 72 20 61 74 61 6e | 68 00 41 72 67 75 6d 65 |for atan|h.Argume|
|00002a60| 6e 74 20 6e 6f 74 20 62 | 65 74 77 65 65 6e 20 2d |nt not b|etween -|
|00002a70| 31 20 61 6e 64 20 31 20 | 66 6f 72 20 61 74 61 6e |1 and 1 |for atan|
|00002a80| 68 00 ff ff b1 56 00 01 | 00 02 00 00 00 3b 00 00 |h....V..|.....;..|
|00002a90| ff ff b1 5a ff ff b1 7c | 00 01 00 02 00 01 00 00 |...Z...||........|
|00002aa0| 08 4a 00 00 ff ff b1 82 | ff ff b1 a4 00 01 00 02 |.J......|........|
|00002ab0| 00 01 00 00 08 82 00 00 | ff ff b1 aa ff ff b1 d6 |........|........|
|00002ac0| 00 02 00 02 00 02 00 00 | 0b 4a ff ff b1 de ff ff |........|.J......|
|00002ad0| b1 fa 00 01 00 02 00 01 | 00 00 09 62 00 00 ff ff |........|...b....|
|00002ae0| b2 00 ff ff b2 30 00 01 | 00 02 00 00 0b 52 ff ff |.....0..|.....R..|
|00002af0| b2 34 ff ff b2 5c 00 01 | 00 02 00 01 00 00 08 52 |.4...\..|.......R|
|00002b00| 00 00 ff ff b2 62 ff ff | b2 82 00 01 00 02 00 01 |.....b..|........|
|00002b10| 00 00 08 8a 00 00 ff ff | b2 88 ff ff b2 b2 00 01 |........|........|
|00002b20| 00 02 00 01 00 00 08 5a | 00 00 ff ff b2 b8 ff ff |.......Z|........|
|00002b30| b2 da 00 02 00 03 00 01 | 00 00 08 62 00 00 ff ff |........|...b....|
|00002b40| b2 e0 ff ff b3 08 00 01 | 00 02 00 01 00 00 08 92 |........|........|
|00002b50| 00 00 ff ff b3 0e ff ff | b3 3c 00 01 00 64 00 00 |........|.<...d..|
|00002b60| 0b 5a ff ff b3 40 ff ff | b3 5a 00 01 00 02 00 00 |.Z...@..|.Z......|
|00002b70| 0b 62 ff ff b3 62 ff ff | b3 8e 00 01 00 02 00 00 |.b...b..|........|
|00002b80| 0b 6a 00 00 ff ff b3 96 | ff ff b3 be 00 01 00 01 |.j......|........|
|00002b90| 00 00 0b 72 00 00 ff ff | b3 c4 ff ff b3 f6 00 01 |...r....|........|
|00002ba0| 00 02 00 01 00 00 09 22 | 00 00 ff ff b3 fe ff ff |......."|........|
|00002bb0| b4 38 00 01 00 01 00 00 | 0b 7a 00 00 ff ff b4 3e |.8......|.z.....>|
|00002bc0| ff ff b4 68 00 01 00 01 | 00 00 0b 82 ff ff b4 6e |...h....|.......n|
|00002bd0| ff ff b4 98 00 02 00 02 | 00 00 00 60 00 00 ff ff |........|...`....|
|00002be0| b4 9c ff ff b4 c2 00 02 | 00 02 00 00 08 a2 00 00 |........|........|
|00002bf0| ff ff b4 c8 ff ff b4 ea | 00 01 00 02 00 00 00 62 |........|.......b|
|00002c00| 00 00 ff ff b4 f2 ff ff | b5 12 00 01 00 01 00 00 |........|........|
|00002c10| 00 55 00 00 ff ff b5 18 | ff ff b5 34 00 01 00 02 |.U......|...4....|
|00002c20| 00 00 0b 8a ff ff b5 38 | ff ff b5 5c 00 01 00 02 |.......8|...\....|
|00002c30| 00 01 00 00 08 6a 00 00 | ff ff b5 62 ff ff b5 8c |.....j..|...b....|
|00002c40| 00 02 00 02 00 00 0b 92 | ff ff b5 90 ff ff b5 ae |........|........|
|00002c50| 00 02 00 02 00 02 00 00 | 0b 9a ff ff b5 b6 ff ff |........|........|
|00002c60| b5 e0 00 01 00 01 00 00 | 00 16 00 00 07 5a 00 00 |........|.....Z..|
|00002c70| ff ff b5 e4 ff ff b5 fc | 00 01 00 01 00 00 0b a2 |........|........|
|00002c80| ff ff b6 00 ff ff b6 16 | 00 02 00 02 00 00 0b aa |........|........|
|00002c90| 00 00 ff ff b6 1c ff ff | b6 48 00 01 00 01 00 00 |........|.H......|
|00002ca0| 0b b2 00 00 ff ff b6 50 | ff ff b6 6c 00 02 00 02 |.......P|...l....|
|00002cb0| 00 00 0b ba ff ff b6 70 | ff ff b6 8c 00 00 00 01 |.......p|........|
|00002cc0| 00 00 00 63 00 00 ff ff | b6 94 ff ff b6 c4 00 01 |...c....|........|
|00002cd0| 00 01 00 00 0b c2 ff ff | b6 ca ff ff b6 f4 00 01 |........|........|
|00002ce0| 00 02 00 00 0b ca ff ff | b6 f8 ff ff b7 22 00 02 |........|....."..|
|00002cf0| 00 02 00 00 0b d2 00 00 | ff ff b7 28 ff ff b7 52 |........|...(...R|
|00002d00| 00 01 00 01 00 00 09 1a | 00 00 ff ff b7 56 ff ff |........|.....V..|
|00002d10| b7 6c 00 02 00 02 00 00 | 08 ea 00 00 ff ff b7 72 |.l......|.......r|
|00002d20| ff ff b7 a0 00 01 00 01 | 00 00 08 ca 00 00 ff ff |........|........|
|00002d30| b7 a6 ff ff b7 b0 00 01 | 00 01 00 00 0b da ff ff |........|........|
|00002d40| b7 b8 ff ff b7 c4 00 01 | 00 01 00 00 0b e2 ff ff |........|........|
|00002d50| b7 ca ff ff b7 e8 00 01 | 00 01 00 00 0b ea ff ff |........|........|
|00002d60| b7 f0 ff ff b8 10 00 01 | 00 01 00 00 0b f2 ff ff |........|........|
|00002d70| b8 18 ff ff b8 2e 00 01 | 00 01 00 00 0b fa ff ff |........|........|
|00002d80| b8 34 ff ff b8 4e 00 01 | 00 01 00 00 0c 02 ff ff |.4...N..|........|
|00002d90| b8 58 ff ff b8 72 00 00 | 00 01 00 00 0c 0a ff ff |.X...r..|........|
|00002da0| b8 78 ff ff b8 aa 00 01 | 00 01 00 00 0c 12 00 00 |.x......|........|
|00002db0| ff ff b8 b0 ff ff b8 de | 00 02 00 02 00 00 0c 1a |........|........|
|00002dc0| ff ff b8 e4 ff ff b9 00 | 00 02 00 64 00 00 0c 22 |........|...d..."|
|00002dd0| ff ff b9 08 ff ff b9 2e | 00 01 00 01 00 00 00 14 |........|........|
|00002de0| 00 00 07 4a 00 00 ff ff | b9 34 ff ff b9 4e 00 01 |...J....|.4...N..|
|00002df0| 00 64 00 00 0c 2a 00 00 | ff ff b9 52 ff ff b9 6a |.d...*..|...R...j|
|00002e00| 00 02 00 02 00 00 08 fa | 00 00 ff ff b9 72 ff ff |........|.....r..|
|00002e10| b9 96 00 01 00 01 00 00 | 0c 32 00 00 ff ff b9 9e |........|.2......|
|00002e20| ff ff b9 c8 00 01 00 64 | 00 00 0c 3a 00 00 ff ff |.......d|...:....|
|00002e30| b9 ce ff ff b9 e6 00 02 | 00 03 00 01 00 00 09 4a |........|.......J|
|00002e40| 00 00 ff ff b9 ec ff ff | ba 1c 00 02 00 02 00 00 |........|........|
|00002e50| 0c 42 00 00 ff ff ba 22 | ff ff ba 4a 00 01 00 01 |.B....."|...J....|
|00002e60| 00 00 0c 4a 00 00 ff ff | ba 52 ff ff ba 74 00 01 |...J....|.R...t..|
|00002e70| 00 01 00 00 0c 52 00 00 | ff ff ba 7a ff ff ba 9a |.....R..|...z....|
|00002e80| 00 01 00 01 00 00 00 54 | 00 00 ff ff ba 9e ff ff |.......T|........|
|00002e90| ba c0 00 03 00 03 00 02 | 00 00 0c 5a ff ff ba c8 |........|...Z....|
|00002ea0| ff ff ba f2 00 01 00 01 | 00 00 00 13 00 00 07 42 |........|.......B|
|00002eb0| 00 00 ff ff ba f6 ff ff | bb 0c 00 01 00 01 00 00 |........|........|
|00002ec0| 00 12 00 00 ff ff bb 14 | ff ff bb 34 00 02 00 02 |........|...4....|
|00002ed0| 00 00 09 5a 00 00 ff ff | bb 3a ff ff bb 52 00 01 |...Z....|.:...R..|
|00002ee0| 00 01 00 00 00 4e 00 00 | ff ff bb 5a ff ff bb 7e |.....N..|...Z...~|
|00002ef0| 00 01 00 01 00 00 00 65 | 00 00 ff ff bb 86 ff ff |.......e|........|
|00002f00| bb a0 00 01 00 01 00 00 | 00 3d 00 00 ff ff bb a6 |........|.=......|
|00002f10| ff ff bb c4 00 01 00 01 | 00 00 00 5d 00 00 ff ff |........|...]....|
|00002f20| bb cc ff ff bb e6 00 01 | 00 01 00 00 00 47 00 00 |........|.....G..|
|00002f30| ff ff bb ec ff ff bc 08 | 00 02 00 02 00 00 0c 62 |........|.......b|
|00002f40| 00 00 ff ff bc 10 ff ff | bc 2e 00 01 00 01 00 00 |........|........|
|00002f50| 00 44 00 00 ff ff bc 36 | ff ff bc 58 00 01 00 01 |.D.....6|...X....|
|00002f60| 00 00 00 42 00 00 ff ff | bc 5e ff ff bc 7a 00 01 |...B....|.^...z..|
|00002f70| 00 01 00 00 00 57 00 00 | ff ff bc 80 ff ff bc 9e |.....W..|........|
|00002f80| 00 01 00 01 00 00 00 4d | 00 00 ff ff bc a4 ff ff |.......M|........|
|00002f90| bc c6 00 01 00 01 00 00 | 09 3a 00 00 ff ff bc cc |........|.:......|
|00002fa0| ff ff bc e8 00 01 00 01 | 00 00 00 51 00 00 ff ff |........|...Q....|
|00002fb0| bc f0 ff ff bd 12 00 02 | 00 02 00 00 0c 6a 00 00 |........|.....j..|
|00002fc0| ff ff bd 18 ff ff bd 44 | 00 01 00 01 00 00 00 48 |.......D|.......H|
|00002fd0| 00 00 ff ff bd 4a ff ff | bd 66 00 02 00 02 00 00 |.....J..|.f......|
|00002fe0| 0c 72 00 00 ff ff bd 6c | ff ff bd 96 00 01 00 01 |.r.....l|........|
|00002ff0| 00 00 00 5f 00 00 ff ff | bd a0 ff ff bd c0 00 01 |..._....|........|
|00003000| 00 01 00 00 0c 7a 00 00 | ff ff bd c6 ff ff bd e8 |.....z..|........|
|00003010| 00 02 00 02 00 00 00 5b | 00 00 ff ff bd f0 ff ff |.......[|........|
|00003020| be 20 00 02 00 02 00 00 | 09 42 00 00 ff ff be 28 |. ......|.B.....(|
|00003030| ff ff be 82 00 01 00 64 | 00 00 0c 82 00 00 ff ff |.......d|........|
|00003040| be 86 ff ff be 9c 00 01 | 00 01 00 00 09 6a 00 00 |........|.....j..|
|00003050| ff ff be a4 ff ff be c8 | 00 02 00 02 00 00 09 12 |........|........|
|00003060| 00 00 ff ff be d0 ff ff | be fc 00 00 00 64 00 00 |........|.....d..|
|00003070| 0c 8a ff ff bf 02 ff ff | bf 22 00 01 00 02 00 00 |........|."......|
|00003080| 0c 92 ff ff bf 26 ff ff | bf 56 00 01 00 01 00 00 |.....&..|.V......|
|00003090| 0c 9a 00 00 ff ff bf 5e | ff ff bf 86 00 01 00 02 |.......^|........|
|000030a0| 00 01 00 00 0c a2 00 00 | ff ff bf 8c ff ff bf be |........|........|
|000030b0| 00 01 00 01 00 00 0c aa | ff ff bf c6 ff ff bf e6 |........|........|
|000030c0| 00 02 00 03 00 02 00 00 | 0c b2 ff ff bf ee ff ff |........|........|
|000030d0| c0 1e 00 02 00 02 00 00 | 0c ba ff ff c0 26 ff ff |........|.....&..|
|000030e0| c0 46 00 02 00 02 00 00 | 0c c2 ff ff c0 4e ff ff |.F......|.....N..|
|000030f0| c0 6e 00 01 00 01 00 00 | 0c ca ff ff c0 78 ff ff |.n......|.....x..|
|00003100| c0 8c 00 01 00 64 00 00 | 0c d2 00 00 ff ff c0 90 |.....d..|........|
|00003110| ff ff c0 9e 00 03 00 03 | 00 00 0c da 00 00 ff ff |........|........|
|00003120| c0 a2 ff ff c0 c6 00 01 | 00 64 00 00 0c e2 00 00 |........|.d......|
|00003130| ff ff c0 ca ff ff c0 d8 | 00 02 00 02 00 00 08 e2 |........|........|
|00003140| 00 00 ff ff c0 de ff ff | c0 f4 00 02 00 02 00 00 |........|........|
|00003150| 07 d2 00 00 ff ff c0 fa | ff ff c1 20 00 03 00 03 |........|... ....|
|00003160| 00 00 0c ea 00 00 ff ff | c1 24 ff ff c1 4c 00 02 |........|.$...L..|
|00003170| 00 03 00 00 0c f2 00 00 | ff ff c1 52 ff ff c1 6a |........|...R...j|
|00003180| 00 01 00 01 00 00 00 58 | 00 00 ff ff c1 70 ff ff |.......X|.....p..|
|00003190| c1 9c 00 00 00 43 00 00 | ff ff c1 a2 ff ff c1 ae |.....C..|........|
|000031a0| 00 01 00 01 00 00 00 15 | 00 00 07 52 00 00 ff ff |........|...R....|
|000031b0| c1 b2 ff ff c1 c8 00 01 | 00 01 00 00 0c fa ff ff |........|........|
|000031c0| c1 cc ff ff c1 f6 00 01 | 00 01 00 00 00 45 00 00 |........|.....E..|
|000031d0| ff ff c1 fc ff ff c2 34 | 00 02 00 02 00 00 08 f2 |.......4|........|
|000031e0| 00 00 ff ff c2 3a ff ff | c2 58 00 01 00 01 00 00 |.....:..|.X......|
|000031f0| 08 d2 00 00 ff ff c2 5e | ff ff c2 80 00 00 00 01 |.......^|........|
|00003200| 00 01 00 00 08 9a 00 00 | ff ff c2 84 ff ff c2 ac |........|........|
|00003210| 00 01 00 01 00 00 0d 02 | 00 00 ff ff c2 b4 ff ff |........|........|
|00003220| c2 e0 00 03 00 03 00 00 | 08 ba 00 00 ff ff c2 e6 |........|........|
|00003230| ff ff c3 06 00 02 00 03 | 00 00 0d 0a ff ff c3 0c |........|........|
|00003240| ff ff c3 3e 00 02 00 64 | 00 00 0d 12 ff ff c3 44 |...>...d|.......D|
|00003250| ff ff c3 70 00 01 00 01 | 00 02 00 00 0d 1a ff ff |...p....|........|
|00003260| c3 74 ff ff c3 92 00 02 | 00 03 00 00 0d 22 ff ff |.t......|....."..|
|00003270| c3 98 ff ff c3 c8 00 02 | 00 02 00 00 0d 2a 00 00 |........|.....*..|
|00003280| ff ff c3 ce ff ff c3 ec | 00 01 00 64 00 00 0d 32 |........|...d...2|
|00003290| ff ff c3 f4 ff ff c4 16 | 00 01 00 01 00 00 0d 3a |........|.......:|
|000032a0| ff ff c4 1e ff ff c4 42 | 00 02 00 02 00 02 00 00 |.......B|........|
|000032b0| 0d 42 ff ff c4 48 ff ff | c4 66 00 04 00 04 00 00 |.B...H..|.f......|
|000032c0| 00 61 00 00 ff ff c4 6e | ff ff c4 a6 00 02 00 02 |.a.....n|........|
|000032d0| 00 00 07 da 00 00 ff ff | c4 ac ff ff c4 da 00 03 |........|........|
|000032e0| 00 03 00 00 07 ea 00 00 | ff ff c4 e0 ff ff c5 04 |........|........|
|000032f0| 00 02 00 02 00 00 07 e2 | 00 00 ff ff c5 0a ff ff |........|........|
|00003300| c5 38 00 03 00 03 00 00 | 07 fa 00 00 ff ff c5 3e |.8......|.......>|
|00003310| ff ff c5 64 00 02 00 02 | 00 00 07 f2 00 00 ff ff |...d....|........|
|00003320| c5 6a ff ff c5 86 00 01 | 00 01 00 00 00 53 00 00 |.j......|.....S..|
|00003330| ff ff c5 8a ff ff c5 a6 | 00 01 00 01 00 02 00 00 |........|........|
|00003340| 0d 4a ff ff c5 ae ff ff | c5 cc 00 02 00 03 00 00 |.J......|........|
|00003350| 0d 52 ff ff c5 d2 ff ff | c6 04 00 01 00 02 00 00 |.R......|........|
|00003360| 0d 5a ff ff c6 0a ff ff | c6 36 00 02 00 03 00 00 |.Z......|.6......|
|00003370| 0d 62 ff ff c6 3e ff ff | c6 7c 00 00 0d 6a 00 00 |.b...>..|.|...j..|
|00003380| ff ff c6 84 ff ff c6 a2 | 00 02 00 02 00 00 00 5c |........|.......\|
|00003390| 00 00 ff ff c6 a8 ff ff | c6 d2 00 02 00 03 00 00 |........|........|
|000033a0| 0d 72 ff ff c6 da ff ff | c7 10 00 01 00 01 00 00 |.r......|........|
|000033b0| 00 3c 00 00 07 32 00 00 | ff ff c7 14 ff ff c7 2e |.<...2..|........|
|000033c0| 00 01 00 02 00 00 0d 7a | ff ff c7 32 ff ff c7 54 |.......z|...2...T|
|000033d0| 00 01 00 02 00 01 00 00 | 08 72 00 00 ff ff c7 5a |........|.r.....Z|
|000033e0| ff ff c7 82 00 01 00 01 | 00 00 0d 82 ff ff c7 88 |........|........|
|000033f0| ff ff c7 aa 00 01 00 02 | 00 00 0d 8a ff ff c7 b0 |........|........|
|00003400| ff ff c7 da 00 01 00 64 | 00 00 0d 92 ff ff c7 de |.......d|........|
|00003410| ff ff c7 f8 00 01 00 01 | 00 00 0d 9a ff ff c7 fc |........|........|
|00003420| ff ff c8 1e 00 01 00 64 | 00 00 0d a2 ff ff c8 26 |.......d|.......&|
|00003430| ff ff c8 44 00 01 00 01 | 00 00 0d aa ff ff c8 4c |...D....|.......L|
|00003440| ff ff c8 5e 00 01 00 64 | 00 00 0d b2 ff ff c8 68 |...^...d|.......h|
|00003450| ff ff c8 8c 00 03 00 03 | 00 00 0d ba ff ff c8 94 |........|........|
|00003460| ff ff c8 c0 00 02 00 02 | 00 00 00 5e 00 00 ff ff |........|...^....|
|00003470| c8 c6 ff ff c8 fa 00 01 | 00 02 00 01 00 00 08 42 |........|.......B|
|00003480| 00 00 ff ff c8 fe ff ff | c9 1e 00 01 00 02 00 01 |........|........|
|00003490| 00 00 08 7a 00 00 ff ff | c9 24 ff ff c9 4e 00 01 |...z....|.$...N..|
|000034a0| 00 02 00 00 0d c2 00 00 | ff ff c9 54 ff ff c9 7e |........|...T...~|
|000034b0| 00 01 00 64 00 00 0d ca | 00 00 ff ff c9 82 00 00 |...d....|........|
|000034c0| 42 61 64 20 62 75 69 6c | 74 2d 69 6e 20 66 75 6e |Bad buil|t-in fun|
|000034d0| 63 74 69 6f 6e 20 69 6e | 64 65 78 00 54 6f 6f 20 |ction in|dex.Too |
|000034e0| 66 65 77 20 61 72 67 75 | 6d 65 6e 74 73 20 66 6f |few argu|ments fo|
|000034f0| 72 20 62 75 69 6c 74 69 | 6e 20 66 75 6e 63 74 69 |r builti|n functi|
|00003500| 6f 6e 20 22 25 73 22 00 | 54 6f 6f 20 6d 61 6e 79 |on "%s".|Too many|
|00003510| 20 61 72 67 75 6d 65 6e | 74 73 20 66 6f 72 20 62 | argumen|ts for b|
|00003520| 75 69 6c 74 69 6e 20 66 | 75 6e 63 74 69 6f 6e 20 |uiltin f|unction |
|00003530| 22 25 73 22 00 00 4e 6f | 6e 2d 72 65 61 6c 20 61 |"%s"..No|n-real a|
|00003540| 72 67 75 6d 65 6e 74 20 | 66 6f 72 20 62 75 69 6c |rgument |for buil|
|00003550| 74 69 6e 20 66 75 6e 63 | 74 69 6f 6e 20 25 73 00 |tin func|tion %s.|
|00003560| 42 61 64 20 62 75 69 6c | 74 69 6e 20 66 75 6e 63 |Bad buil|tin func|
|00003570| 74 69 6f 6e 20 63 61 6c | 6c 00 45 76 61 6c 75 61 |tion cal|l.Evalua|
|00003580| 74 69 6e 67 20 6e 6f 6e | 2d 73 74 72 69 6e 67 20 |ting non|-string |
|00003590| 61 72 67 75 6d 65 6e 74 | 00 00 45 76 61 6c 75 61 |argument|..Evalua|
|000035a0| 74 69 6f 6e 20 65 72 72 | 6f 72 00 00 45 6e 64 20 |tion err|or..End |
|000035b0| 6f 66 20 66 69 6c 65 20 | 77 68 69 6c 65 20 70 72 |of file |while pr|
|000035c0| 6f 6d 70 74 69 6e 67 00 | 00 00 43 61 6e 6e 6f 74 |ompting.|..Cannot|
|000035d0| 20 61 6c 6c 6f 63 61 74 | 65 20 73 74 72 69 6e 67 | allocat|e string|
|000035e0| 00 00 4e 6f 6e 2d 73 69 | 6d 70 6c 65 20 74 79 70 |..Non-si|mple typ|
|000035f0| 65 20 66 6f 72 20 73 74 | 72 69 6e 67 20 63 6f 6e |e for st|ring con|
|00003600| 76 65 72 73 69 6f 6e 00 | 4e 6f 6e 2d 69 6e 74 65 |version.|Non-inte|
|00003610| 67 65 72 20 66 6f 72 20 | 69 73 72 65 6c 00 4e 6f |ger for |isrel.No|
|00003620| 6e 2d 69 6e 74 65 67 72 | 61 6c 20 62 69 74 20 70 |n-integr|al bit p|
|00003630| 6f 73 69 74 69 6f 6e 00 | 56 65 72 79 20 6c 61 72 |osition.|Very lar|
|00003640| 67 65 20 62 69 74 20 70 | 6f 73 69 74 69 6f 6e 00 |ge bit p|osition.|
|00003650| 4e 6f 6e 2d 69 6e 74 65 | 67 72 61 6c 20 64 69 67 |Non-inte|gral dig|
|00003660| 69 74 20 70 6f 73 69 74 | 69 6f 6e 00 56 65 72 79 |it posit|ion.Very|
|00003670| 20 6c 61 72 67 65 20 64 | 69 67 69 74 20 70 6f 73 | large d|igit pos|
|00003680| 69 74 69 6f 6e 00 4e 6f | 6e 2d 72 65 61 6c 20 65 |ition.No|n-real e|
|00003690| 70 73 69 6c 6f 6e 20 76 | 61 6c 75 65 20 66 6f 72 |psilon v|alue for|
|000036a0| 20 65 78 70 00 00 42 61 | 64 20 61 72 67 75 6d 65 | exp..Ba|d argume|
|000036b0| 6e 74 20 74 79 70 65 20 | 66 6f 72 20 65 78 70 00 |nt type |for exp.|
|000036c0| 4e 6f 6e 2d 72 65 61 6c | 20 65 70 73 69 6c 6f 6e |Non-real| epsilon|
|000036d0| 20 76 61 6c 75 65 20 66 | 6f 72 20 6c 6e 00 42 61 | value f|or ln.Ba|
|000036e0| 64 20 61 72 67 75 6d 65 | 6e 74 20 74 79 70 65 20 |d argume|nt type |
|000036f0| 66 6f 72 20 6c 6e 00 00 | 4e 6f 6e 2d 72 65 61 6c |for ln..|Non-real|
|00003700| 20 65 70 73 69 6c 6f 6e | 20 76 61 6c 75 65 20 66 | epsilon| value f|
|00003710| 6f 72 20 63 6f 73 00 00 | 42 61 64 20 61 72 67 75 |or cos..|Bad argu|
|00003720| 6d 65 6e 74 20 74 79 70 | 65 20 66 6f 72 20 63 6f |ment typ|e for co|
|00003730| 73 00 4e 6f 6e 2d 72 65 | 61 6c 20 65 70 73 69 6c |s.Non-re|al epsil|
|00003740| 6f 6e 20 76 61 6c 75 65 | 20 66 6f 72 20 73 69 6e |on value| for sin|
|00003750| 00 00 42 61 64 20 61 72 | 67 75 6d 65 6e 74 20 74 |..Bad ar|gument t|
|00003760| 79 70 65 20 66 6f 72 20 | 73 69 6e 00 4e 6f 6e 2d |ype for |sin.Non-|
|00003770| 72 65 61 6c 20 65 70 73 | 69 6c 6f 6e 20 76 61 6c |real eps|ilon val|
|00003780| 75 65 20 66 6f 72 20 61 | 72 67 00 00 42 61 64 20 |ue for a|rg..Bad |
|00003790| 61 72 67 75 6d 65 6e 74 | 20 74 79 70 65 20 66 6f |argument| type fo|
|000037a0| 72 20 61 72 67 00 48 69 | 67 68 62 69 74 20 6f 66 |r arg.Hi|ghbit of|
|000037b0| 20 7a 65 72 6f 00 48 69 | 67 68 62 69 74 20 6f 66 | zero.Hi|ghbit of|
|000037c0| 20 6e 6f 6e 2d 69 6e 74 | 65 67 65 72 00 00 4c 6f | non-int|eger..Lo|
|000037d0| 77 62 69 74 20 6f 66 20 | 7a 65 72 6f 00 00 4c 6f |wbit of |zero..Lo|
|000037e0| 77 62 69 74 20 6f 66 20 | 6e 6f 6e 2d 69 6e 74 65 |wbit of |non-inte|
|000037f0| 67 65 72 00 4e 6f 6e 2d | 72 65 61 6c 20 61 72 67 |ger.Non-|real arg|
|00003800| 75 6d 65 6e 74 20 66 6f | 72 20 70 6f 6c 61 72 00 |ument fo|r polar.|
|00003810| 42 61 64 20 65 70 73 69 | 6c 6f 6e 20 76 61 6c 75 |Bad epsi|lon valu|
|00003820| 65 20 66 6f 72 20 70 6f | 6c 61 72 00 4e 6f 6e 2d |e for po|lar.Non-|
|00003830| 76 61 72 69 61 62 6c 65 | 20 61 72 67 75 6d 65 6e |variable| argumen|
|00003840| 74 20 66 6f 72 20 6d 61 | 74 66 69 6c 6c 00 4e 6f |t for ma|tfill.No|
|00003850| 6e 2d 6d 61 74 72 69 78 | 20 66 6f 72 20 6d 61 74 |n-matrix| for mat|
|00003860| 66 69 6c 6c 00 00 4e 6f | 6e 2d 6d 61 74 72 69 78 |fill..No|n-matrix|
|00003870| 20 61 72 67 75 6d 65 6e | 74 20 66 6f 72 20 6d 61 | argumen|t for ma|
|00003880| 74 74 72 61 6e 73 00 00 | 4e 6f 6e 2d 6d 61 74 72 |ttrans..|Non-matr|
|00003890| 69 78 20 61 72 67 75 6d | 65 6e 74 20 66 6f 72 20 |ix argum|ent for |
|000038a0| 64 65 74 00 4e 6f 6e 2d | 6d 61 74 72 69 78 20 61 |det.Non-|matrix a|
|000038b0| 72 67 75 6d 65 6e 74 20 | 66 6f 72 20 6d 61 74 64 |rgument |for matd|
|000038c0| 69 6d 00 00 42 61 64 20 | 61 72 67 75 6d 65 6e 74 |im..Bad |argument|
|000038d0| 20 74 79 70 65 20 66 6f | 72 20 6d 61 74 6d 69 6e | type fo|r matmin|
|000038e0| 00 00 42 61 64 20 64 69 | 6d 65 6e 73 69 6f 6e 20 |..Bad di|mension |
|000038f0| 76 61 6c 75 65 20 66 6f | 72 20 6d 61 74 6d 69 6e |value fo|r matmin|
|00003900| 00 00 42 61 64 20 61 72 | 67 75 6d 65 6e 74 20 74 |..Bad ar|gument t|
|00003910| 79 70 65 20 66 6f 72 20 | 6d 61 74 6d 61 78 00 00 |ype for |matmax..|
|00003920| 42 61 64 20 64 69 6d 65 | 6e 73 69 6f 6e 20 76 61 |Bad dime|nsion va|
|00003930| 6c 75 65 20 66 6f 72 20 | 6d 61 74 6d 61 78 00 00 |lue for |matmax..|
|00003940| 4e 6f 6e 2d 6d 61 74 72 | 69 78 20 61 72 67 75 6d |Non-matr|ix argum|
|00003950| 65 6e 74 20 66 6f 72 20 | 63 72 6f 73 73 20 70 72 |ent for |cross pr|
|00003960| 6f 64 75 63 74 00 4e 6f | 6e 2d 6d 61 74 72 69 78 |oduct.No|n-matrix|
|00003970| 20 61 72 67 75 6d 65 6e | 74 20 66 6f 72 20 64 6f | argumen|t for do|
|00003980| 74 20 70 72 6f 64 75 63 | 74 00 4e 6f 6e 2d 73 74 |t produc|t.Non-st|
|00003990| 72 69 6e 67 20 61 72 67 | 75 6d 65 6e 74 20 66 6f |ring arg|ument fo|
|000039a0| 72 20 73 74 72 6c 65 6e | 00 00 4e 6f 6e 2d 73 74 |r strlen|..Non-st|
|000039b0| 72 69 6e 67 20 61 72 67 | 75 6d 65 6e 74 20 66 6f |ring arg|ument fo|
|000039c0| 72 20 73 74 72 63 61 74 | 00 00 4e 6f 20 6d 65 6d |r strcat|..No mem|
|000039d0| 6f 72 79 20 66 6f 72 20 | 73 74 72 63 61 74 00 00 |ory for |strcat..|
|000039e0| 4e 6f 6e 2d 73 74 72 69 | 6e 67 20 61 72 67 75 6d |Non-stri|ng argum|
|000039f0| 65 6e 74 20 66 6f 72 20 | 73 75 62 73 74 72 00 00 |ent for |substr..|
|00003a00| 4e 6f 6e 2d 6e 75 6d 65 | 72 69 63 20 70 6f 73 69 |Non-nume|ric posi|
|00003a10| 74 69 6f 6e 73 20 66 6f | 72 20 73 75 62 73 74 72 |tions fo|r substr|
|00003a20| 00 00 49 6c 6c 65 67 61 | 6c 20 70 6f 73 69 74 69 |..Illega|l positi|
|00003a30| 6f 6e 73 20 66 6f 72 20 | 73 75 62 73 74 72 00 00 |ons for |substr..|
|00003a40| 4e 6f 20 6d 65 6d 6f 72 | 79 20 66 6f 72 20 73 75 |No memor|y for su|
|00003a50| 62 73 74 72 00 00 4e 6f | 6e 2d 6e 75 6d 65 72 69 |bstr..No|n-numeri|
|00003a60| 63 20 61 72 67 75 6d 65 | 6e 74 20 66 6f 72 20 63 |c argume|nt for c|
|00003a70| 68 61 72 00 49 6c 6c 65 | 67 61 6c 20 6e 75 6d 62 |har.Ille|gal numb|
|00003a80| 65 72 20 66 6f 72 20 63 | 68 61 72 00 4e 6f 6e 2d |er for c|har.Non-|
|00003a90| 73 74 72 69 6e 67 20 61 | 72 67 75 6d 65 6e 74 20 |string a|rgument |
|00003aa0| 66 6f 72 20 6f 72 64 00 | 4d 75 6c 74 69 2d 63 68 |for ord.|Multi-ch|
|00003ab0| 61 72 61 63 74 65 72 20 | 73 74 72 69 6e 67 20 67 |aracter |string g|
|00003ac0| 69 76 65 6e 20 66 6f 72 | 20 6f 72 64 00 00 4e 6f |iven for| ord..No|
|00003ad0| 6e 2d 6e 75 6d 65 72 69 | 63 20 73 74 61 72 74 20 |n-numeri|c start |
|00003ae0| 69 6e 64 65 78 20 66 6f | 72 20 73 65 61 72 63 68 |index fo|r search|
|00003af0| 00 00 42 61 64 20 73 74 | 61 72 74 20 69 6e 64 65 |..Bad st|art inde|
|00003b00| 78 20 66 6f 72 20 73 65 | 61 72 63 68 00 00 42 61 |x for se|arch..Ba|
|00003b10| 64 20 61 72 67 75 6d 65 | 6e 74 20 74 79 70 65 20 |d argume|nt type |
|00003b20| 66 6f 72 20 73 65 61 72 | 63 68 00 00 4e 6f 6e 2d |for sear|ch..Non-|
|00003b30| 6e 75 6d 65 72 69 63 20 | 73 74 61 72 74 20 69 6e |numeric |start in|
|00003b40| 64 65 78 20 66 6f 72 20 | 72 73 65 61 72 63 68 00 |dex for |rsearch.|
|00003b50| 42 61 64 20 73 74 61 72 | 74 20 69 6e 64 65 78 20 |Bad star|t index |
|00003b60| 66 6f 72 20 72 73 65 61 | 72 63 68 00 42 61 64 20 |for rsea|rch.Bad |
|00003b70| 61 72 67 75 6d 65 6e 74 | 20 74 79 70 65 20 66 6f |argument| type fo|
|00003b80| 72 20 72 73 65 61 72 63 | 68 00 49 6e 73 65 72 74 |r rsearc|h.Insert|
|00003b90| 69 6e 67 20 69 6e 74 6f | 20 6e 6f 6e 2d 6c 69 73 |ing into| non-lis|
|00003ba0| 74 20 76 61 72 69 61 62 | 6c 65 00 00 4e 6f 6e 2d |t variab|le..Non-|
|00003bb0| 69 6e 74 65 67 72 61 6c | 20 69 6e 64 65 78 20 66 |integral| index f|
|00003bc0| 6f 72 20 6c 69 73 74 20 | 69 6e 73 65 72 74 00 00 |or list |insert..|
|00003bd0| 50 75 73 68 69 6e 67 20 | 6f 6e 74 6f 20 6e 6f 6e |Pushing |onto non|
|00003be0| 2d 6c 69 73 74 20 76 61 | 72 69 61 62 6c 65 00 00 |-list va|riable..|
|00003bf0| 41 70 70 65 6e 64 69 6e | 67 20 74 6f 20 6e 6f 6e |Appendin|g to non|
|00003c00| 2d 6c 69 73 74 20 76 61 | 72 69 61 62 6c 65 00 00 |-list va|riable..|
|00003c10| 44 65 6c 65 74 69 6e 67 | 20 66 72 6f 6d 20 6e 6f |Deleting| from no|
|00003c20| 6e 2d 6c 69 73 74 20 76 | 61 72 69 61 62 6c 65 00 |n-list v|ariable.|
|00003c30| 4e 6f 6e 2d 69 6e 74 65 | 67 72 61 6c 20 69 6e 64 |Non-inte|gral ind|
|00003c40| 65 78 20 66 6f 72 20 6c | 69 73 74 20 64 65 6c 65 |ex for l|ist dele|
|00003c50| 74 65 00 00 50 6f 70 70 | 69 6e 67 20 66 72 6f 6d |te..Popp|ing from|
|00003c60| 20 6e 6f 6e 2d 6c 69 73 | 74 20 76 61 72 69 61 62 | non-lis|t variab|
|00003c70| 6c 65 00 00 52 65 6d 6f | 76 69 6e 67 20 66 72 6f |le..Remo|ving fro|
|00003c80| 6d 20 6e 6f 6e 2d 6c 69 | 73 74 20 76 61 72 69 61 |m non-li|st varia|
|00003c90| 62 6c 65 00 4e 6f 6e 2d | 73 74 72 69 6e 67 20 66 |ble.Non-|string f|
|00003ca0| 69 6c 65 6e 61 6d 65 20 | 66 6f 72 20 66 6f 70 65 |ilename |for fope|
|00003cb0| 6e 00 4e 6f 6e 2d 73 74 | 72 69 6e 67 20 6d 6f 64 |n.Non-st|ring mod|
|00003cc0| 65 20 66 6f 72 20 66 6f | 70 65 6e 00 4e 6f 6e 2d |e for fo|pen.Non-|
|00003cd0| 66 69 6c 65 20 66 6f 72 | 20 66 63 6c 6f 73 65 00 |file for| fclose.|
|00003ce0| 4e 6f 6e 2d 66 69 6c 65 | 20 66 6f 72 20 66 65 72 |Non-file| for fer|
|00003cf0| 72 6f 72 00 4e 6f 6e 2d | 66 69 6c 65 20 66 6f 72 |ror.Non-|file for|
|00003d00| 20 66 65 6f 66 00 4e 6f | 6e 2d 66 69 6c 65 20 66 | feof.No|n-file f|
|00003d10| 6f 72 20 66 66 6c 75 73 | 68 00 4e 6f 6e 2d 66 69 |or fflus|h.Non-fi|
|00003d20| 6c 65 20 66 6f 72 20 66 | 70 72 69 6e 74 66 00 00 |le for f|printf..|
|00003d30| 4e 6f 6e 2d 73 74 72 69 | 6e 67 20 66 6f 72 6d 61 |Non-stri|ng forma|
|00003d40| 74 20 66 6f 72 20 66 70 | 72 69 6e 74 66 00 4e 6f |t for fp|rintf.No|
|00003d50| 6e 2d 73 74 72 69 6e 67 | 20 66 6f 72 6d 61 74 20 |n-string| format |
|00003d60| 66 6f 72 20 70 72 69 6e | 74 66 00 00 4e 6f 6e 2d |for prin|tf..Non-|
|00003d70| 73 74 72 69 6e 67 20 66 | 6f 72 6d 61 74 20 66 6f |string f|ormat fo|
|00003d80| 72 20 73 74 72 70 72 69 | 6e 74 66 00 4e 6f 6e 2d |r strpri|ntf.Non-|
|00003d90| 66 69 6c 65 20 66 6f 72 | 20 66 67 65 74 63 00 00 |file for| fgetc..|
|00003da0| 4e 6f 6e 2d 66 69 6c 65 | 20 66 6f 72 20 66 67 65 |Non-file| for fge|
|00003db0| 74 6c 69 6e 65 00 4e 6f | 6e 2d 69 6e 74 65 67 65 |tline.No|n-intege|
|00003dc0| 72 20 66 6f 72 20 66 69 | 6c 65 73 00 0a 4e 61 6d |r for fi|les..Nam|
|00003dd0| 65 09 41 72 67 73 09 44 | 65 73 63 72 69 70 74 69 |e.Args.D|escripti|
|00003de0| 6f 6e 0a 0a 00 00 25 2d | 39 73 20 00 25 64 2b 20 |on....%-|9s .%d+ |
|00003df0| 20 20 20 00 25 2d 36 64 | 00 00 25 64 2d 25 2d 34 | .%-6d|..%d-%-4|
|00003e00| 64 00 20 25 73 0a 00 00 | 0a 00 00 00 55 6e 6b 6e |d. %s...|....Unkn|
|00003e10| 6f 77 6e 20 62 75 69 6c | 74 20 69 6e 20 69 6e 64 |own buil|t in ind|
|00003e20| 65 78 00 00 54 6f 6f 20 | 66 65 77 20 61 72 67 75 |ex..Too |few argu|
|00003e30| 6d 65 6e 74 73 20 66 6f | 72 20 62 75 69 6c 74 69 |ments fo|r builti|
|00003e40| 6e 20 66 75 6e 63 74 69 | 6f 6e 20 22 25 73 22 00 |n functi|on "%s".|
|00003e50| 54 6f 6f 20 6d 61 6e 79 | 20 61 72 67 75 6d 65 6e |Too many| argumen|
|00003e60| 74 73 20 66 6f 72 20 62 | 75 69 6c 74 69 6e 20 66 |ts for b|uiltin f|
|00003e70| 75 6e 63 74 69 6f 6e 20 | 22 25 73 22 00 00 61 62 |unction |"%s"..ab|
|00003e80| 73 00 61 62 73 6f 6c 75 | 74 65 20 76 61 6c 75 65 |s.absolu|te value|
|00003e90| 20 77 69 74 68 69 6e 20 | 61 63 63 75 72 61 63 79 | within |accuracy|
|00003ea0| 20 62 00 00 61 63 6f 73 | 00 00 61 72 63 63 6f 73 | b..acos|..arccos|
|00003eb0| 69 6e 65 20 6f 66 20 61 | 20 77 69 74 68 69 6e 20 |ine of a| within |
|00003ec0| 61 63 63 75 72 61 63 79 | 20 62 00 00 61 63 6f 73 |accuracy| b..acos|
|00003ed0| 68 00 68 79 70 65 72 62 | 6f 6c 69 63 20 61 72 63 |h.hyperb|olic arc|
|00003ee0| 63 6f 73 69 6e 65 20 6f | 66 20 61 20 77 69 74 68 |cosine o|f a with|
|00003ef0| 69 6e 20 61 63 63 75 72 | 61 63 79 20 62 00 61 70 |in accur|acy b.ap|
|00003f00| 70 65 6e 64 00 00 61 70 | 70 65 6e 64 20 76 61 6c |pend..ap|pend val|
|00003f10| 75 65 20 74 6f 20 65 6e | 64 20 6f 66 20 6c 69 73 |ue to en|d of lis|
|00003f20| 74 00 61 70 70 72 00 00 | 61 70 70 72 6f 78 69 6d |t.appr..|approxim|
|00003f30| 61 74 65 20 61 20 77 69 | 74 68 20 73 69 6d 70 6c |ate a wi|th simpl|
|00003f40| 65 72 20 66 72 61 63 74 | 69 6f 6e 20 74 6f 20 77 |er fract|ion to w|
|00003f50| 69 74 68 69 6e 20 62 00 | 61 72 67 00 61 72 67 75 |ithin b.|arg.argu|
|00003f60| 6d 65 6e 74 20 28 74 68 | 65 20 61 6e 67 6c 65 29 |ment (th|e angle)|
|00003f70| 20 6f 66 20 63 6f 6d 70 | 6c 65 78 20 6e 75 6d 62 | of comp|lex numb|
|00003f80| 65 72 00 00 61 73 69 6e | 00 00 61 72 63 73 69 6e |er..asin|..arcsin|
|00003f90| 65 20 6f 66 20 61 20 77 | 69 74 68 69 6e 20 61 63 |e of a w|ithin ac|
|00003fa0| 63 75 72 61 63 79 20 62 | 00 00 61 73 69 6e 68 00 |curacy b|..asinh.|
|00003fb0| 68 79 70 65 72 62 6f 6c | 69 63 20 61 72 63 73 69 |hyperbol|ic arcsi|
|00003fc0| 6e 65 20 6f 66 20 61 20 | 77 69 74 68 69 6e 20 61 |ne of a |within a|
|00003fd0| 63 63 75 72 61 63 79 20 | 62 00 61 74 61 6e 00 00 |ccuracy |b.atan..|
|00003fe0| 61 72 63 74 61 6e 67 65 | 6e 74 20 6f 66 20 61 20 |arctange|nt of a |
|00003ff0| 77 69 74 68 69 6e 20 61 | 63 63 75 72 61 63 79 20 |within a|ccuracy |
|00004000| 62 00 61 74 61 6e 32 00 | 61 6e 67 6c 65 20 74 6f |b.atan2.|angle to|
|00004010| 20 70 6f 69 6e 74 20 28 | 62 2c 61 29 20 77 69 74 | point (|b,a) wit|
|00004020| 68 69 6e 20 61 63 63 75 | 72 61 63 79 20 63 00 00 |hin accu|racy c..|
|00004030| 61 74 61 6e 68 00 68 79 | 70 65 72 62 6f 6c 69 63 |atanh.hy|perbolic|
|00004040| 20 61 72 63 74 61 6e 67 | 65 6e 74 20 6f 66 20 61 | arctang|ent of a|
|00004050| 20 77 69 74 68 69 6e 20 | 61 63 63 75 72 61 63 79 | within |accuracy|
|00004060| 20 62 00 00 61 76 67 00 | 61 72 69 74 68 6d 65 74 | b..avg.|arithmet|
|00004070| 69 63 20 6d 65 61 6e 20 | 6f 66 20 76 61 6c 75 65 |ic mean |of value|
|00004080| 73 00 62 72 6f 75 6e 64 | 00 00 72 6f 75 6e 64 20 |s.bround|..round |
|00004090| 76 61 6c 75 65 20 61 20 | 74 6f 20 62 20 6e 75 6d |value a |to b num|
|000040a0| 62 65 72 20 6f 66 20 62 | 69 6e 61 72 79 20 70 6c |ber of b|inary pl|
|000040b0| 61 63 65 73 00 00 62 74 | 72 75 6e 63 00 00 74 72 |aces..bt|runc..tr|
|000040c0| 75 6e 63 61 74 65 20 61 | 20 74 6f 20 62 20 6e 75 |uncate a| to b nu|
|000040d0| 6d 62 65 72 20 6f 66 20 | 62 69 6e 61 72 79 20 70 |mber of |binary p|
|000040e0| 6c 61 63 65 73 00 63 65 | 69 6c 00 00 73 6d 61 6c |laces.ce|il..smal|
|000040f0| 6c 65 73 74 20 69 6e 74 | 65 67 65 72 20 67 72 65 |lest int|eger gre|
|00004100| 61 74 65 72 20 74 68 61 | 6e 20 6f 72 20 65 71 75 |ater tha|n or equ|
|00004110| 61 6c 20 74 6f 20 6e 75 | 6d 62 65 72 00 00 63 66 |al to nu|mber..cf|
|00004120| 61 70 70 72 00 00 61 70 | 70 72 6f 78 69 6d 61 74 |appr..ap|proximat|
|00004130| 65 20 61 20 77 69 74 68 | 69 6e 20 61 63 63 75 72 |e a with|in accur|
|00004140| 61 63 79 20 62 20 75 73 | 69 6e 67 20 63 6f 6e 74 |acy b us|ing cont|
|00004150| 69 6e 75 65 64 20 66 72 | 61 63 74 69 6f 6e 73 00 |inued fr|actions.|
|00004160| 63 66 73 69 6d 00 73 69 | 6d 70 6c 69 66 79 20 6e |cfsim.si|mplify n|
|00004170| 75 6d 62 65 72 20 75 73 | 69 6e 67 20 63 6f 6e 74 |umber us|ing cont|
|00004180| 69 6e 75 65 64 20 66 72 | 61 63 74 69 6f 6e 73 00 |inued fr|actions.|
|00004190| 63 68 61 72 00 00 63 68 | 61 72 61 63 74 65 72 20 |char..ch|aracter |
|000041a0| 63 6f 72 72 65 73 70 6f | 6e 64 69 6e 67 20 74 6f |correspo|nding to|
|000041b0| 20 69 6e 74 65 67 65 72 | 20 76 61 6c 75 65 00 00 | integer| value..|
|000041c0| 63 6d 70 00 63 6f 6d 70 | 61 72 65 20 76 61 6c 75 |cmp.comp|are valu|
|000041d0| 65 73 20 72 65 74 75 72 | 6e 69 6e 67 20 2d 31 2c |es retur|ning -1,|
|000041e0| 20 30 2c 20 6f 72 20 31 | 00 00 63 6f 6d 62 00 00 | 0, or 1|..comb..|
|000041f0| 63 6f 6d 62 69 6e 61 74 | 6f 72 69 61 6c 20 6e 75 |combinat|orial nu|
|00004200| 6d 62 65 72 20 61 21 2f | 62 21 28 61 2d 62 29 21 |mber a!/|b!(a-b)!|
|00004210| 00 00 63 6f 6e 66 69 67 | 00 00 73 65 74 20 6f 72 |..config|..set or|
|00004220| 20 72 65 61 64 20 63 6f | 6e 66 69 67 75 72 61 74 | read co|nfigurat|
|00004230| 69 6f 6e 20 76 61 6c 75 | 65 00 63 6f 6e 6a 00 00 |ion valu|e.conj..|
|00004240| 63 6f 6d 70 6c 65 78 20 | 63 6f 6e 6a 75 67 61 74 |complex |conjugat|
|00004250| 65 20 6f 66 20 76 61 6c | 75 65 00 00 63 6f 73 00 |e of val|ue..cos.|
|00004260| 63 6f 73 69 6e 65 20 6f | 66 20 76 61 6c 75 65 20 |cosine o|f value |
|00004270| 61 20 77 69 74 68 69 6e | 20 61 63 63 75 72 61 63 |a within| accurac|
|00004280| 79 20 62 00 63 6f 73 68 | 00 00 68 79 70 65 72 62 |y b.cosh|..hyperb|
|00004290| 6f 6c 69 63 20 63 6f 73 | 69 6e 65 20 6f 66 20 61 |olic cos|ine of a|
|000042a0| 20 77 69 74 68 69 6e 20 | 61 63 63 75 72 61 63 79 | within |accuracy|
|000042b0| 20 62 00 00 63 70 00 00 | 43 72 6f 73 73 20 70 72 | b..cp..|Cross pr|
|000042c0| 6f 64 75 63 74 20 6f 66 | 20 74 77 6f 20 76 65 63 |oduct of| two vec|
|000042d0| 74 6f 72 73 00 00 64 65 | 6c 65 74 65 00 00 64 65 |tors..de|lete..de|
|000042e0| 6c 65 74 65 20 65 6c 65 | 6d 65 6e 74 20 66 72 6f |lete ele|ment fro|
|000042f0| 6d 20 6c 69 73 74 20 61 | 20 61 74 20 70 6f 73 69 |m list a| at posi|
|00004300| 74 69 6f 6e 20 62 00 00 | 64 65 6e 00 64 65 6e 6f |tion b..|den.deno|
|00004310| 6d 69 6e 61 74 6f 72 20 | 6f 66 20 66 72 61 63 74 |minator |of fract|
|00004320| 69 6f 6e 00 64 65 74 00 | 64 65 74 65 72 6d 69 6e |ion.det.|determin|
|00004330| 61 6e 74 20 6f 66 20 6d | 61 74 72 69 78 00 64 69 |ant of m|atrix.di|
|00004340| 67 69 74 00 64 69 67 69 | 74 20 61 74 20 73 70 65 |git.digi|t at spe|
|00004350| 63 69 66 69 65 64 20 64 | 65 63 69 6d 61 6c 20 70 |cified d|ecimal p|
|00004360| 6c 61 63 65 20 6f 66 20 | 6e 75 6d 62 65 72 00 00 |lace of |number..|
|00004370| 64 69 67 69 74 73 00 00 | 6e 75 6d 62 65 72 20 6f |digits..|number o|
|00004380| 66 20 64 69 67 69 74 73 | 20 69 6e 20 6e 75 6d 62 |f digits| in numb|
|00004390| 65 72 00 00 64 70 00 00 | 44 6f 74 20 70 72 6f 64 |er..dp..|Dot prod|
|000043a0| 75 63 74 20 6f 66 20 74 | 77 6f 20 76 65 63 74 6f |uct of t|wo vecto|
|000043b0| 72 73 00 00 65 70 73 69 | 6c 6f 6e 00 73 65 74 20 |rs..epsi|lon.set |
|000043c0| 6f 72 20 72 65 61 64 20 | 61 6c 6c 6f 77 65 64 20 |or read |allowed |
|000043d0| 65 72 72 6f 72 20 66 6f | 72 20 72 65 61 6c 20 63 |error fo|r real c|
|000043e0| 61 6c 63 75 6c 61 74 69 | 6f 6e 73 00 65 76 61 6c |alculati|ons.eval|
|000043f0| 00 00 45 76 61 6c 75 61 | 74 65 20 65 78 70 72 65 |..Evalua|te expre|
|00004400| 73 73 69 6f 6e 20 66 72 | 6f 6d 20 73 74 72 69 6e |ssion fr|om strin|
|00004410| 67 20 74 6f 20 76 61 6c | 75 65 00 00 65 78 70 00 |g to val|ue..exp.|
|00004420| 65 78 70 6f 6e 65 6e 74 | 69 61 6c 20 6f 66 20 76 |exponent|ial of v|
|00004430| 61 6c 75 65 20 61 20 77 | 69 74 68 69 6e 20 61 63 |alue a w|ithin ac|
|00004440| 63 75 72 61 63 79 20 62 | 00 00 66 63 6e 74 00 00 |curacy b|..fcnt..|
|00004450| 63 6f 75 6e 74 20 6f 66 | 20 74 69 6d 65 73 20 6f |count of| times o|
|00004460| 6e 65 20 6e 75 6d 62 65 | 72 20 64 69 76 69 64 65 |ne numbe|r divide|
|00004470| 73 20 61 6e 6f 74 68 65 | 72 00 66 69 62 00 66 69 |s anothe|r.fib.fi|
|00004480| 62 6f 6e 61 63 63 69 20 | 6e 75 6d 62 65 72 20 46 |bonacci |number F|
|00004490| 28 6e 29 00 66 72 65 6d | 00 00 6e 75 6d 62 65 72 |(n).frem|..number|
|000044a0| 20 77 69 74 68 20 61 6c | 6c 20 6f 63 63 75 72 61 | with al|l occura|
|000044b0| 6e 63 65 73 20 6f 66 20 | 66 61 63 74 6f 72 20 72 |nces of |factor r|
|000044c0| 65 6d 6f 76 65 64 00 00 | 66 61 63 74 00 00 66 61 |emoved..|fact..fa|
|000044d0| 63 74 6f 72 69 61 6c 00 | 66 63 6c 6f 73 65 00 00 |ctorial.|fclose..|
|000044e0| 63 6c 6f 73 65 20 66 69 | 6c 65 00 00 66 65 6f 66 |close fi|le..feof|
|000044f0| 00 00 77 68 65 74 68 65 | 72 20 45 4f 46 20 72 65 |..whethe|r EOF re|
|00004500| 61 63 68 65 64 20 66 6f | 72 20 66 69 6c 65 00 00 |ached fo|r file..|
|00004510| 66 65 72 72 6f 72 00 00 | 77 68 65 74 68 65 72 20 |ferror..|whether |
|00004520| 65 72 72 6f 72 20 6f 63 | 63 75 72 72 65 64 20 66 |error oc|curred f|
|00004530| 6f 72 20 66 69 6c 65 00 | 66 66 6c 75 73 68 00 00 |or file.|fflush..|
|00004540| 66 6c 75 73 68 20 6f 75 | 74 70 75 74 20 74 6f 20 |flush ou|tput to |
|00004550| 66 69 6c 65 00 00 66 67 | 65 74 63 00 72 65 61 64 |file..fg|etc.read|
|00004560| 20 6e 65 78 74 20 63 68 | 61 72 20 66 72 6f 6d 20 | next ch|ar from |
|00004570| 66 69 6c 65 00 00 66 67 | 65 74 6c 69 6e 65 00 00 |file..fg|etline..|
|00004580| 72 65 61 64 20 6e 65 78 | 74 20 6c 69 6e 65 20 66 |read nex|t line f|
|00004590| 72 6f 6d 20 66 69 6c 65 | 00 00 66 69 6c 65 73 00 |rom file|..files.|
|000045a0| 72 65 74 75 72 6e 20 6f | 70 65 6e 65 64 20 66 69 |return o|pened fi|
|000045b0| 6c 65 20 6f 72 20 6d 61 | 78 20 6e 75 6d 62 65 72 |le or ma|x number|
|000045c0| 20 6f 66 20 6f 70 65 6e | 65 64 20 66 69 6c 65 73 | of open|ed files|
|000045d0| 00 00 66 6c 6f 6f 72 00 | 67 72 65 61 74 65 73 74 |..floor.|greatest|
|000045e0| 20 69 6e 74 65 67 65 72 | 20 6c 65 73 73 20 74 68 | integer| less th|
|000045f0| 61 6e 20 6f 72 20 65 71 | 75 61 6c 20 74 6f 20 6e |an or eq|ual to n|
|00004600| 75 6d 62 65 72 00 66 6f | 70 65 6e 00 6f 70 65 6e |umber.fo|pen.open|
|00004610| 20 66 69 6c 65 20 6e 61 | 6d 65 20 61 20 69 6e 20 | file na|me a in |
|00004620| 6d 6f 64 65 20 62 00 00 | 66 70 72 69 6e 74 66 00 |mode b..|fprintf.|
|00004630| 70 72 69 6e 74 20 66 6f | 72 6d 61 74 74 65 64 20 |print fo|rmatted |
|00004640| 6f 75 74 70 75 74 20 74 | 6f 20 6f 70 65 6e 65 64 |output t|o opened|
|00004650| 20 66 69 6c 65 00 66 72 | 61 63 00 00 66 72 61 63 | file.fr|ac..frac|
|00004660| 74 69 6f 6e 61 6c 20 70 | 61 72 74 20 6f 66 20 76 |tional p|art of v|
|00004670| 61 6c 75 65 00 00 67 63 | 64 00 67 72 65 61 74 65 |alue..gc|d.greate|
|00004680| 73 74 20 63 6f 6d 6d 6f | 6e 20 64 69 76 69 73 6f |st commo|n diviso|
|00004690| 72 00 67 63 64 72 65 6d | 00 00 61 20 64 69 76 69 |r.gcdrem|..a divi|
|000046a0| 64 65 64 20 72 65 70 65 | 61 74 65 64 6c 79 20 62 |ded repe|atedly b|
|000046b0| 79 20 67 63 64 20 77 69 | 74 68 20 62 00 00 68 69 |y gcd wi|th b..hi|
|000046c0| 67 68 62 69 74 00 68 69 | 67 68 20 62 69 74 20 6e |ghbit.hi|gh bit n|
|000046d0| 75 6d 62 65 72 20 69 6e | 20 62 61 73 65 20 32 20 |umber in| base 2 |
|000046e0| 72 65 70 72 65 73 65 6e | 74 61 74 69 6f 6e 00 00 |represen|tation..|
|000046f0| 68 6d 65 61 6e 00 68 61 | 72 6d 6f 6e 69 63 20 6d |hmean.ha|rmonic m|
|00004700| 65 61 6e 20 6f 66 20 76 | 61 6c 75 65 73 00 68 79 |ean of v|alues.hy|
|00004710| 70 6f 74 00 68 79 70 6f | 74 65 6e 75 73 65 20 6f |pot.hypo|tenuse o|
|00004720| 66 20 72 69 67 68 74 20 | 74 72 69 61 6e 67 6c 65 |f right |triangle|
|00004730| 20 77 69 74 68 69 6e 20 | 61 63 63 75 72 61 63 79 | within |accuracy|
|00004740| 20 63 00 00 69 6c 6f 67 | 00 00 69 6e 74 65 67 72 | c..ilog|..integr|
|00004750| 61 6c 20 6c 6f 67 20 6f | 66 20 6f 6e 65 20 6e 75 |al log o|f one nu|
|00004760| 6d 62 65 72 20 77 69 74 | 68 20 61 6e 6f 74 68 65 |mber wit|h anothe|
|00004770| 72 00 69 6c 6f 67 31 30 | 00 00 69 6e 74 65 67 72 |r.ilog10|..integr|
|00004780| 61 6c 20 6c 6f 67 20 6f | 66 20 61 20 6e 75 6d 62 |al log o|f a numb|
|00004790| 65 72 20 62 61 73 65 20 | 31 30 00 00 69 6c 6f 67 |er base |10..ilog|
|000047a0| 32 00 69 6e 74 65 67 72 | 61 6c 20 6c 6f 67 20 6f |2.integr|al log o|
|000047b0| 66 20 61 20 6e 75 6d 62 | 65 72 20 62 61 73 65 20 |f a numb|er base |
|000047c0| 32 00 69 6d 00 00 69 6d | 61 67 69 6e 61 72 79 20 |2.im..im|aginary |
|000047d0| 70 61 72 74 20 6f 66 20 | 63 6f 6d 70 6c 65 78 20 |part of |complex |
|000047e0| 6e 75 6d 62 65 72 00 00 | 69 6e 73 65 72 74 00 00 |number..|insert..|
|000047f0| 69 6e 73 65 72 74 20 76 | 61 6c 75 65 20 63 20 69 |insert v|alue c i|
|00004800| 6e 74 6f 20 6c 69 73 74 | 20 61 20 61 74 20 70 6f |nto list| a at po|
|00004810| 73 69 74 69 6f 6e 20 62 | 00 00 69 6e 74 00 69 6e |sition b|..int.in|
|00004820| 74 65 67 65 72 20 70 61 | 72 74 20 6f 66 20 76 61 |teger pa|rt of va|
|00004830| 6c 75 65 00 69 6e 76 65 | 72 73 65 00 6d 75 6c 74 |lue.inve|rse.mult|
|00004840| 69 70 6c 69 63 61 74 69 | 76 65 20 69 6e 76 65 72 |iplicati|ve inver|
|00004850| 73 65 20 6f 66 20 76 61 | 6c 75 65 00 69 72 6f 6f |se of va|lue.iroo|
|00004860| 74 00 69 6e 74 65 67 65 | 72 20 62 27 74 68 20 72 |t.intege|r b'th r|
|00004870| 6f 6f 74 20 6f 66 20 61 | 00 00 69 73 65 76 65 6e |oot of a|..iseven|
|00004880| 00 00 77 68 65 74 68 65 | 72 20 61 20 76 61 6c 75 |..whethe|r a valu|
|00004890| 65 20 69 73 20 61 6e 20 | 65 76 65 6e 20 69 6e 74 |e is an |even int|
|000048a0| 65 67 65 72 00 00 69 73 | 66 69 6c 65 00 00 77 68 |eger..is|file..wh|
|000048b0| 65 74 68 65 72 20 61 20 | 76 61 6c 75 65 20 69 73 |ether a |value is|
|000048c0| 20 61 20 66 69 6c 65 00 | 69 73 69 6e 74 00 77 68 | a file.|isint.wh|
|000048d0| 65 74 68 65 72 20 61 20 | 76 61 6c 75 65 20 69 73 |ether a |value is|
|000048e0| 20 61 6e 20 69 6e 74 65 | 67 65 72 00 69 73 6c 69 | an inte|ger.isli|
|000048f0| 73 74 00 00 77 68 65 74 | 68 65 72 20 61 20 76 61 |st..whet|her a va|
|00004900| 6c 75 65 20 69 73 20 61 | 20 6c 69 73 74 00 69 73 |lue is a| list.is|
|00004910| 6d 61 74 00 77 68 65 74 | 68 65 72 20 61 20 76 61 |mat.whet|her a va|
|00004920| 6c 75 65 20 69 73 20 61 | 20 6d 61 74 72 69 78 00 |lue is a| matrix.|
|00004930| 69 73 6d 75 6c 74 00 00 | 77 68 65 74 68 65 72 20 |ismult..|whether |
|00004940| 61 20 69 73 20 61 20 6d | 75 6c 74 69 70 6c 65 20 |a is a m|ultiple |
|00004950| 6f 66 20 62 00 00 69 73 | 6e 75 6c 6c 00 00 77 68 |of b..is|null..wh|
|00004960| 65 74 68 65 72 20 61 20 | 76 61 6c 75 65 20 69 73 |ether a |value is|
|00004970| 20 74 68 65 20 6e 75 6c | 6c 20 76 61 6c 75 65 00 | the nul|l value.|
|00004980| 69 73 6e 75 6d 00 77 68 | 65 74 68 65 72 20 61 20 |isnum.wh|ether a |
|00004990| 76 61 6c 75 65 20 69 73 | 20 61 20 6e 75 6d 62 65 |value is| a numbe|
|000049a0| 72 00 69 73 6f 62 6a 00 | 77 68 65 74 68 65 72 20 |r.isobj.|whether |
|000049b0| 61 20 76 61 6c 75 65 20 | 69 73 20 61 6e 20 6f 62 |a value |is an ob|
|000049c0| 6a 65 63 74 00 00 69 73 | 6f 64 64 00 77 68 65 74 |ject..is|odd.whet|
|000049d0| 68 65 72 20 61 20 76 61 | 6c 75 65 20 69 73 20 61 |her a va|lue is a|
|000049e0| 6e 20 6f 64 64 20 69 6e | 74 65 67 65 72 00 69 73 |n odd in|teger.is|
|000049f0| 71 72 74 00 69 6e 74 65 | 67 65 72 20 70 61 72 74 |qrt.inte|ger part|
|00004a00| 20 6f 66 20 73 71 75 61 | 72 65 20 72 6f 6f 74 00 | of squa|re root.|
|00004a10| 69 73 72 65 61 6c 00 00 | 77 68 65 74 68 65 72 20 |isreal..|whether |
|00004a20| 61 20 76 61 6c 75 65 20 | 69 73 20 61 20 72 65 61 |a value |is a rea|
|00004a30| 6c 20 6e 75 6d 62 65 72 | 00 00 69 73 73 65 74 00 |l number|..isset.|
|00004a40| 77 68 65 74 68 65 72 20 | 62 69 74 20 62 20 6f 66 |whether |bit b of|
|00004a50| 20 61 62 73 28 61 29 20 | 28 69 6e 20 62 61 73 65 | abs(a) |(in base|
|00004a60| 20 32 29 20 69 73 20 73 | 65 74 00 00 69 73 73 74 | 2) is s|et..isst|
|00004a70| 72 00 77 68 65 74 68 65 | 72 20 61 20 76 61 6c 75 |r.whethe|r a valu|
|00004a80| 65 20 69 73 20 61 20 73 | 74 72 69 6e 67 00 69 73 |e is a s|tring.is|
|00004a90| 72 65 6c 00 77 68 65 74 | 68 65 72 20 74 77 6f 20 |rel.whet|her two |
|00004aa0| 6e 75 6d 62 65 72 73 20 | 61 72 65 20 72 65 6c 61 |numbers |are rela|
|00004ab0| 74 69 76 65 6c 79 20 70 | 72 69 6d 65 00 00 69 73 |tively p|rime..is|
|00004ac0| 73 69 6d 70 6c 65 00 00 | 77 68 65 74 68 65 72 20 |simple..|whether |
|00004ad0| 76 61 6c 75 65 20 69 73 | 20 61 20 73 69 6d 70 6c |value is| a simpl|
|00004ae0| 65 20 74 79 70 65 00 00 | 69 73 73 71 00 00 77 68 |e type..|issq..wh|
|00004af0| 65 74 68 65 72 20 6f 72 | 20 6e 6f 74 20 6e 75 6d |ether or| not num|
|00004b00| 62 65 72 20 69 73 20 61 | 20 73 71 75 61 72 65 00 |ber is a| square.|
|00004b10| 69 73 74 79 70 65 00 00 | 77 68 65 74 68 65 72 20 |istype..|whether |
|00004b20| 74 68 65 20 74 79 70 65 | 20 6f 66 20 61 20 69 73 |the type| of a is|
|00004b30| 20 73 61 6d 65 20 61 73 | 20 74 68 65 20 74 79 70 | same as| the typ|
|00004b40| 65 20 6f 66 20 62 00 00 | 6a 61 63 6f 62 69 00 00 |e of b..|jacobi..|
|00004b50| 2d 31 20 3d 3e 20 61 20 | 69 73 20 6e 6f 74 20 71 |-1 => a |is not q|
|00004b60| 75 61 64 72 61 74 69 63 | 20 72 65 73 69 64 75 65 |uadratic| residue|
|00004b70| 20 6d 6f 64 20 62 0a 09 | 09 20 31 20 3d 3e 20 62 | mod b..|. 1 => b|
|00004b80| 20 69 73 20 63 6f 6d 70 | 6f 73 69 74 65 2c 20 6f | is comp|osite, o|
|00004b90| 72 20 61 20 69 73 20 71 | 75 61 64 20 72 65 73 69 |r a is q|uad resi|
|00004ba0| 64 75 65 20 6f 66 20 62 | 00 00 6c 63 6d 00 6c 65 |due of b|..lcm.le|
|00004bb0| 61 73 74 20 63 6f 6d 6d | 6f 6e 20 6d 75 6c 74 69 |ast comm|on multi|
|00004bc0| 70 6c 65 00 6c 63 6d 66 | 61 63 74 00 6c 63 6d 20 |ple.lcmf|act.lcm |
|00004bd0| 6f 66 20 61 6c 6c 20 69 | 6e 74 65 67 65 72 73 20 |of all i|ntegers |
|00004be0| 75 70 20 74 69 6c 6c 20 | 6e 75 6d 62 65 72 00 00 |up till |number..|
|00004bf0| 6c 66 61 63 74 6f 72 00 | 6c 6f 77 65 73 74 20 70 |lfactor.|lowest p|
|00004c00| 72 69 6d 65 20 66 61 63 | 74 6f 72 20 6f 66 20 61 |rime fac|tor of a|
|00004c10| 20 69 6e 20 66 69 72 73 | 74 20 62 20 70 72 69 6d | in firs|t b prim|
|00004c20| 65 73 00 00 6c 69 73 74 | 00 00 63 72 65 61 74 65 |es..list|..create|
|00004c30| 20 6c 69 73 74 20 6f 66 | 20 73 70 65 63 69 66 69 | list of| specifi|
|00004c40| 65 64 20 76 61 6c 75 65 | 73 00 6c 6e 00 00 6e 61 |ed value|s.ln..na|
|00004c50| 74 75 72 61 6c 20 6c 6f | 67 61 72 69 74 68 6d 20 |tural lo|garithm |
|00004c60| 6f 66 20 76 61 6c 75 65 | 20 61 20 77 69 74 68 69 |of value| a withi|
|00004c70| 6e 20 61 63 63 75 72 61 | 63 79 20 62 00 00 6c 6f |n accura|cy b..lo|
|00004c80| 77 62 69 74 00 00 6c 6f | 77 20 62 69 74 20 6e 75 |wbit..lo|w bit nu|
|00004c90| 6d 62 65 72 20 69 6e 20 | 62 61 73 65 20 32 20 72 |mber in |base 2 r|
|00004ca0| 65 70 72 65 73 65 6e 74 | 61 74 69 6f 6e 00 6c 74 |epresent|ation.lt|
|00004cb0| 6f 6c 00 00 6c 65 67 2d | 74 6f 2d 6c 65 67 20 6f |ol..leg-|to-leg o|
|00004cc0| 66 20 75 6e 69 74 20 72 | 69 67 68 74 20 74 72 69 |f unit r|ight tri|
|00004cd0| 61 6e 67 6c 65 20 28 73 | 71 72 74 28 31 20 2d 20 |angle (s|qrt(1 - |
|00004ce0| 61 5e 32 29 29 00 6d 61 | 74 64 69 6d 00 00 6e 75 |a^2)).ma|tdim..nu|
|00004cf0| 6d 62 65 72 20 6f 66 20 | 64 69 6d 65 6e 73 69 6f |mber of |dimensio|
|00004d00| 6e 73 20 6f 66 20 6d 61 | 74 72 69 78 00 00 6d 61 |ns of ma|trix..ma|
|00004d10| 74 66 69 6c 6c 00 66 69 | 6c 6c 20 6d 61 74 72 69 |tfill.fi|ll matri|
|00004d20| 78 20 77 69 74 68 20 76 | 61 6c 75 65 20 62 20 28 |x with v|alue b (|
|00004d30| 76 61 6c 75 65 20 63 20 | 6f 6e 20 64 69 61 67 6f |value c |on diago|
|00004d40| 6e 61 6c 29 00 00 6d 61 | 74 6d 61 78 00 00 6d 61 |nal)..ma|tmax..ma|
|00004d50| 78 69 6d 75 6d 20 69 6e | 64 65 78 20 6f 66 20 6d |ximum in|dex of m|
|00004d60| 61 74 72 69 78 20 61 20 | 64 69 6d 20 62 00 6d 61 |atrix a |dim b.ma|
|00004d70| 74 6d 69 6e 00 00 6d 69 | 6e 69 6d 75 6d 20 69 6e |tmin..mi|nimum in|
|00004d80| 64 65 78 20 6f 66 20 6d | 61 74 72 69 78 20 61 20 |dex of m|atrix a |
|00004d90| 64 69 6d 20 62 00 6d 61 | 74 74 72 61 6e 73 00 00 |dim b.ma|ttrans..|
|00004da0| 74 72 61 6e 73 70 6f 73 | 65 20 6f 66 20 6d 61 74 |transpos|e of mat|
|00004db0| 72 69 78 00 6d 61 78 00 | 6d 61 78 69 6d 75 6d 20 |rix.max.|maximum |
|00004dc0| 76 61 6c 75 65 00 6d 65 | 71 00 77 68 65 74 68 65 |value.me|q.whethe|
|00004dd0| 72 20 61 20 61 6e 64 20 | 62 20 61 72 65 20 65 71 |r a and |b are eq|
|00004de0| 75 61 6c 20 6d 6f 64 75 | 6c 6f 20 63 00 00 6d 69 |ual modu|lo c..mi|
|00004df0| 6e 00 6d 69 6e 69 6d 75 | 6d 20 76 61 6c 75 65 00 |n.minimu|m value.|
|00004e00| 6d 69 6e 76 00 00 69 6e | 76 65 72 73 65 20 6f 66 |minv..in|verse of|
|00004e10| 20 61 20 6d 6f 64 75 6c | 6f 20 62 00 6d 6d 69 6e | a modul|o b.mmin|
|00004e20| 00 00 61 20 6d 6f 64 20 | 62 20 76 61 6c 75 65 20 |..a mod |b value |
|00004e30| 77 69 74 68 20 73 6d 61 | 6c 6c 65 73 74 20 61 62 |with sma|llest ab|
|00004e40| 73 20 76 61 6c 75 65 00 | 6d 6e 65 00 77 68 65 74 |s value.|mne.whet|
|00004e50| 68 65 72 20 61 20 61 6e | 64 20 62 20 61 72 65 20 |her a an|d b are |
|00004e60| 6e 6f 74 20 65 71 75 61 | 6c 20 6d 6f 64 75 6c 6f |not equa|l modulo|
|00004e70| 20 63 00 00 6e 65 61 72 | 00 00 73 69 67 6e 20 6f | c..near|..sign o|
|00004e80| 66 20 28 61 62 73 28 61 | 2d 62 29 20 2d 20 63 29 |f (abs(a|-b) - c)|
|00004e90| 00 00 6e 6f 72 6d 00 00 | 6e 6f 72 6d 20 6f 66 20 |..norm..|norm of |
|00004ea0| 61 20 76 61 6c 75 65 20 | 28 73 71 75 61 72 65 20 |a value |(square |
|00004eb0| 6f 66 20 61 62 73 6f 6c | 75 74 65 20 76 61 6c 75 |of absol|ute valu|
|00004ec0| 65 29 00 00 6e 75 6c 6c | 00 00 6e 75 6c 6c 20 76 |e)..null|..null v|
|00004ed0| 61 6c 75 65 00 00 6e 75 | 6d 00 6e 75 6d 65 72 61 |alue..nu|m.numera|
|00004ee0| 74 6f 72 20 6f 66 20 66 | 72 61 63 74 69 6f 6e 00 |tor of f|raction.|
|00004ef0| 6f 72 64 00 69 6e 74 65 | 67 65 72 20 63 6f 72 72 |ord.inte|ger corr|
|00004f00| 65 73 70 6f 6e 64 69 6e | 67 20 74 6f 20 63 68 61 |espondin|g to cha|
|00004f10| 72 61 63 74 65 72 20 76 | 61 6c 75 65 00 00 70 61 |racter v|alue..pa|
|00004f20| 72 61 6d 00 76 61 6c 75 | 65 20 6f 66 20 70 61 72 |ram.valu|e of par|
|00004f30| 61 6d 65 74 65 72 20 6e | 20 28 6f 72 20 70 61 72 |ameter n| (or par|
|00004f40| 61 6d 65 74 65 72 20 63 | 6f 75 6e 74 20 69 66 20 |ameter c|ount if |
|00004f50| 6e 20 69 73 20 7a 65 72 | 6f 29 00 00 70 65 72 6d |n is zer|o)..perm|
|00004f60| 00 00 70 65 72 6d 75 74 | 61 74 69 6f 6e 20 6e 75 |..permut|ation nu|
|00004f70| 6d 62 65 72 20 61 21 2f | 28 61 2d 62 29 21 00 00 |mber a!/|(a-b)!..|
|00004f80| 70 66 61 63 74 00 70 72 | 6f 64 75 63 74 20 6f 66 |pfact.pr|oduct of|
|00004f90| 20 70 72 69 6d 65 73 20 | 75 70 20 74 69 6c 6c 20 | primes |up till |
|00004fa0| 6e 75 6d 62 65 72 00 00 | 70 69 00 00 76 61 6c 75 |number..|pi..valu|
|00004fb0| 65 20 6f 66 20 70 69 20 | 61 63 63 75 72 61 74 65 |e of pi |accurate|
|00004fc0| 20 74 6f 20 77 69 74 68 | 69 6e 20 65 70 73 69 6c | to with|in epsil|
|00004fd0| 6f 6e 00 00 70 6c 61 63 | 65 73 00 00 70 6c 61 63 |on..plac|es..plac|
|00004fe0| 65 73 20 61 66 74 65 72 | 20 64 65 63 69 6d 61 6c |es after| decimal|
|00004ff0| 20 70 6f 69 6e 74 20 28 | 2d 31 20 69 66 20 69 6e | point (|-1 if in|
|00005000| 66 69 6e 69 74 65 29 00 | 70 6d 6f 64 00 00 6d 6f |finite).|pmod..mo|
|00005010| 64 20 6f 66 20 61 20 70 | 6f 77 65 72 20 28 61 20 |d of a p|ower (a |
|00005020| 5e 20 62 20 28 6d 6f 64 | 20 63 29 29 00 00 70 6f |^ b (mod| c))..po|
|00005030| 6c 61 72 00 63 6f 6d 70 | 6c 65 78 20 76 61 6c 75 |lar.comp|lex valu|
|00005040| 65 20 6f 66 20 70 6f 6c | 61 72 20 63 6f 6f 72 64 |e of pol|ar coord|
|00005050| 69 6e 61 74 65 20 28 61 | 20 2a 20 65 78 70 28 62 |inate (a| * exp(b|
|00005060| 2a 31 69 29 29 00 70 6f | 6c 79 00 00 28 61 31 2c |*1i)).po|ly..(a1,|
|00005070| 61 32 2c 2e 2e 2e 2c 61 | 6e 2c 78 29 20 3d 20 61 |a2,...,a|n,x) = a|
|00005080| 31 2a 78 5e 6e 2b 61 32 | 2a 78 5e 28 6e 2d 31 29 |1*x^n+a2|*x^(n-1)|
|00005090| 2b 2e 2e 2e 2b 61 6e 00 | 70 6f 70 00 70 6f 70 20 |+...+an.|pop.pop |
|000050a0| 76 61 6c 75 65 20 66 72 | 6f 6d 20 66 72 6f 6e 74 |value fr|om front|
|000050b0| 20 6f 66 20 6c 69 73 74 | 00 00 70 6f 77 65 72 00 | of list|..power.|
|000050c0| 76 61 6c 75 65 20 61 20 | 72 61 69 73 65 64 20 74 |value a |raised t|
|000050d0| 6f 20 74 68 65 20 70 6f | 77 65 72 20 62 20 77 69 |o the po|wer b wi|
|000050e0| 74 68 69 6e 20 61 63 63 | 75 72 61 63 79 20 63 00 |thin acc|uracy c.|
|000050f0| 70 74 65 73 74 00 70 72 | 6f 62 61 62 69 6c 69 73 |ptest.pr|obabilis|
|00005100| 74 69 63 20 70 72 69 6d | 61 6c 69 74 79 20 74 65 |tic prim|ality te|
|00005110| 73 74 00 00 70 72 69 6e | 74 66 00 00 70 72 69 6e |st..prin|tf..prin|
|00005120| 74 20 66 6f 72 6d 61 74 | 74 65 64 20 6f 75 74 70 |t format|ted outp|
|00005130| 75 74 20 74 6f 20 73 74 | 64 6f 75 74 00 00 70 72 |ut to st|dout..pr|
|00005140| 6f 6d 70 74 00 00 70 72 | 6f 6d 70 74 20 66 6f 72 |ompt..pr|ompt for|
|00005150| 20 69 6e 70 75 74 20 6c | 69 6e 65 20 75 73 69 6e | input l|ine usin|
|00005160| 67 20 76 61 6c 75 65 20 | 61 00 70 75 73 68 00 00 |g value |a.push..|
|00005170| 70 75 73 68 20 76 61 6c | 75 65 20 6f 6e 74 6f 20 |push val|ue onto |
|00005180| 66 72 6f 6e 74 20 6f 66 | 20 6c 69 73 74 00 71 75 |front of| list.qu|
|00005190| 6f 6d 6f 64 00 00 73 65 | 74 20 63 20 61 6e 64 20 |omod..se|t c and |
|000051a0| 64 20 74 6f 20 71 75 6f | 74 69 65 6e 74 20 61 6e |d to quo|tient an|
|000051b0| 64 20 72 65 6d 61 69 6e | 64 65 72 20 6f 66 20 61 |d remain|der of a|
|000051c0| 20 64 69 76 69 64 65 64 | 20 62 79 20 62 00 72 63 | divided| by b.rc|
|000051d0| 69 6e 00 00 63 6f 6e 76 | 65 72 74 20 6e 6f 72 6d |in..conv|ert norm|
|000051e0| 61 6c 20 6e 75 6d 62 65 | 72 20 61 20 74 6f 20 52 |al numbe|r a to R|
|000051f0| 45 44 43 20 6e 75 6d 62 | 65 72 20 6d 6f 64 20 62 |EDC numb|er mod b|
|00005200| 00 00 72 63 6d 75 6c 00 | 6d 75 6c 74 69 70 6c 79 |..rcmul.|multiply|
|00005210| 20 52 45 44 43 20 6e 75 | 6d 62 65 72 73 20 61 20 | REDC nu|mbers a |
|00005220| 61 6e 64 20 62 20 6d 6f | 64 20 63 00 72 63 6f 75 |and b mo|d c.rcou|
|00005230| 74 00 63 6f 6e 76 65 72 | 74 20 52 45 44 43 20 6e |t.conver|t REDC n|
|00005240| 75 6d 62 65 72 20 61 20 | 6d 6f 64 20 62 20 74 6f |umber a |mod b to|
|00005250| 20 6e 6f 72 6d 61 6c 20 | 6e 75 6d 62 65 72 00 00 | normal |number..|
|00005260| 72 63 70 6f 77 00 72 61 | 69 73 65 20 52 45 44 43 |rcpow.ra|ise REDC|
|00005270| 20 6e 75 6d 62 65 72 20 | 61 20 74 6f 20 70 6f 77 | number |a to pow|
|00005280| 65 72 20 62 20 6d 6f 64 | 20 63 00 00 72 63 73 71 |er b mod| c..rcsq|
|00005290| 00 00 73 71 75 61 72 65 | 20 52 45 44 43 20 6e 75 |..square| REDC nu|
|000052a0| 6d 62 65 72 20 61 20 6d | 6f 64 20 62 00 00 72 65 |mber a m|od b..re|
|000052b0| 00 00 72 65 61 6c 20 70 | 61 72 74 20 6f 66 20 63 |..real p|art of c|
|000052c0| 6f 6d 70 6c 65 78 20 6e | 75 6d 62 65 72 00 72 65 |omplex n|umber.re|
|000052d0| 6d 6f 76 65 00 00 72 65 | 6d 6f 76 65 20 76 61 6c |move..re|move val|
|000052e0| 75 65 20 66 72 6f 6d 20 | 65 6e 64 20 6f 66 20 6c |ue from |end of l|
|000052f0| 69 73 74 00 72 6f 6f 74 | 00 00 76 61 6c 75 65 20 |ist.root|..value |
|00005300| 61 20 74 61 6b 65 6e 20 | 74 6f 20 74 68 65 20 62 |a taken |to the b|
|00005310| 27 74 68 20 72 6f 6f 74 | 20 77 69 74 68 69 6e 20 |'th root| within |
|00005320| 61 63 63 75 72 61 63 79 | 20 63 00 00 72 6f 75 6e |accuracy| c..roun|
|00005330| 64 00 72 6f 75 6e 64 20 | 76 61 6c 75 65 20 61 20 |d.round |value a |
|00005340| 74 6f 20 62 20 6e 75 6d | 62 65 72 20 6f 66 20 64 |to b num|ber of d|
|00005350| 65 63 69 6d 61 6c 20 70 | 6c 61 63 65 73 00 72 73 |ecimal p|laces.rs|
|00005360| 65 61 72 63 68 00 72 65 | 76 65 72 73 65 20 73 65 |earch.re|verse se|
|00005370| 61 72 63 68 20 6d 61 74 | 72 69 78 20 6f 72 20 6c |arch mat|rix or l|
|00005380| 69 73 74 20 66 6f 72 20 | 76 61 6c 75 65 20 62 20 |ist for |value b |
|00005390| 73 74 61 72 74 69 6e 67 | 20 61 74 20 69 6e 64 65 |starting| at inde|
|000053a0| 78 20 63 00 72 75 6e 74 | 69 6d 65 00 75 73 65 72 |x c.runt|ime.user|
|000053b0| 20 6d 6f 64 65 20 63 70 | 75 20 74 69 6d 65 20 69 | mode cp|u time i|
|000053c0| 6e 20 73 65 63 6f 6e 64 | 73 00 73 63 61 6c 65 00 |n second|s.scale.|
|000053d0| 73 63 61 6c 65 20 76 61 | 6c 75 65 20 75 70 20 6f |scale va|lue up o|
|000053e0| 72 20 64 6f 77 6e 20 62 | 79 20 61 20 70 6f 77 65 |r down b|y a powe|
|000053f0| 72 20 6f 66 20 74 77 6f | 00 00 73 65 61 72 63 68 |r of two|..search|
|00005400| 00 00 73 65 61 72 63 68 | 20 6d 61 74 72 69 78 20 |..search| matrix |
|00005410| 6f 72 20 6c 69 73 74 20 | 66 6f 72 20 76 61 6c 75 |or list |for valu|
|00005420| 65 20 62 20 73 74 61 72 | 74 69 6e 67 20 61 74 20 |e b star|ting at |
|00005430| 69 6e 64 65 78 20 63 00 | 73 67 6e 00 73 69 67 6e |index c.|sgn.sign|
|00005440| 20 6f 66 20 76 61 6c 75 | 65 20 28 2d 31 2c 20 30 | of valu|e (-1, 0|
|00005450| 2c 20 31 29 00 00 73 69 | 6e 00 73 69 6e 65 20 6f |, 1)..si|n.sine o|
|00005460| 66 20 76 61 6c 75 65 20 | 61 20 77 69 74 68 69 6e |f value |a within|
|00005470| 20 61 63 63 75 72 61 63 | 79 20 62 00 73 69 6e 68 | accurac|y b.sinh|
|00005480| 00 00 68 79 70 65 72 62 | 6f 6c 69 63 20 73 69 6e |..hyperb|olic sin|
|00005490| 65 20 6f 66 20 61 20 77 | 69 74 68 69 6e 20 61 63 |e of a w|ithin ac|
|000054a0| 63 75 72 61 63 79 20 62 | 00 00 73 69 7a 65 00 00 |curacy b|..size..|
|000054b0| 74 6f 74 61 6c 20 6e 75 | 6d 62 65 72 20 6f 66 20 |total nu|mber of |
|000054c0| 65 6c 65 6d 65 6e 74 73 | 20 69 6e 20 76 61 6c 75 |elements| in valu|
|000054d0| 65 00 73 71 72 74 00 00 | 73 71 75 61 72 65 20 72 |e.sqrt..|square r|
|000054e0| 6f 6f 74 20 6f 66 20 76 | 61 6c 75 65 20 61 20 77 |oot of v|alue a w|
|000054f0| 69 74 68 69 6e 20 61 63 | 63 75 72 61 63 79 20 62 |ithin ac|curacy b|
|00005500| 00 00 73 73 71 00 73 75 | 6d 20 6f 66 20 73 71 75 |..ssq.su|m of squ|
|00005510| 61 72 65 73 20 6f 66 20 | 76 61 6c 75 65 73 00 00 |ares of |values..|
|00005520| 73 74 72 00 73 69 6d 70 | 6c 65 20 76 61 6c 75 65 |str.simp|le value|
|00005530| 20 63 6f 6e 76 65 72 74 | 65 64 20 74 6f 20 73 74 | convert|ed to st|
|00005540| 72 69 6e 67 00 00 73 74 | 72 63 61 74 00 00 63 6f |ring..st|rcat..co|
|00005550| 6e 63 61 74 65 6e 61 74 | 65 20 73 74 72 69 6e 67 |ncatenat|e string|
|00005560| 73 20 74 6f 67 65 74 68 | 65 72 00 00 73 74 72 6c |s togeth|er..strl|
|00005570| 65 6e 00 00 6c 65 6e 67 | 74 68 20 6f 66 20 73 74 |en..leng|th of st|
|00005580| 72 69 6e 67 00 00 73 74 | 72 70 72 69 6e 74 66 00 |ring..st|rprintf.|
|00005590| 72 65 74 75 72 6e 20 66 | 6f 72 6d 61 74 74 65 64 |return f|ormatted|
|000055a0| 20 6f 75 74 70 75 74 20 | 61 73 20 61 20 73 74 72 | output |as a str|
|000055b0| 69 6e 67 00 73 75 62 73 | 74 72 00 00 73 75 62 73 |ing.subs|tr..subs|
|000055c0| 74 72 69 6e 67 20 6f 66 | 20 61 20 66 72 6f 6d 20 |tring of| a from |
|000055d0| 70 6f 73 69 74 69 6f 6e | 20 62 20 66 6f 72 20 63 |position| b for c|
|000055e0| 20 63 68 61 72 73 00 00 | 73 77 61 70 00 00 73 77 | chars..|swap..sw|
|000055f0| 61 70 20 76 61 6c 75 65 | 73 20 6f 66 20 76 61 72 |ap value|s of var|
|00005600| 69 61 62 6c 65 73 20 61 | 20 61 6e 64 20 62 20 28 |iables a| and b (|
|00005610| 63 61 6e 20 62 65 20 64 | 61 6e 67 65 72 6f 75 73 |can be d|angerous|
|00005620| 29 00 74 61 6e 00 74 61 | 6e 67 65 6e 74 20 6f 66 |).tan.ta|ngent of|
|00005630| 20 61 20 77 69 74 68 69 | 6e 20 61 63 63 75 72 61 | a withi|n accura|
|00005640| 63 79 20 62 00 00 74 61 | 6e 68 00 00 68 79 70 65 |cy b..ta|nh..hype|
|00005650| 72 62 6f 6c 69 63 20 74 | 61 6e 67 65 6e 74 20 6f |rbolic t|angent o|
|00005660| 66 20 61 20 77 69 74 68 | 69 6e 20 61 63 63 75 72 |f a with|in accur|
|00005670| 61 63 79 20 62 00 74 72 | 75 6e 63 00 74 72 75 6e |acy b.tr|unc.trun|
|00005680| 63 61 74 65 20 61 20 74 | 6f 20 62 20 6e 75 6d 62 |cate a t|o b numb|
|00005690| 65 72 20 6f 66 20 64 65 | 63 69 6d 61 6c 20 70 6c |er of de|cimal pl|
|000056a0| 61 63 65 73 00 00 78 6f | 72 00 6c 6f 67 69 63 61 |aces..xo|r.logica|
|000056b0| 6c 20 78 6f 72 00 00 00 | 4c 61 62 65 6c 20 22 25 |l xor...|Label "%|
|000056c0| 73 22 20 69 73 20 6d 75 | 6c 74 69 70 6c 79 20 64 |s" is mu|ltiply d|
|000056d0| 65 66 69 6e 65 64 00 00 | 54 6f 6f 20 6d 61 6e 79 |efined..|Too many|
|000056e0| 20 6c 61 62 65 6c 73 20 | 69 6e 20 75 73 65 00 00 | labels |in use..|
|000056f0| 54 6f 6f 20 6d 61 6e 79 | 20 6c 61 62 65 6c 73 20 |Too many| labels |
|00005700| 69 6e 20 75 73 65 00 00 | 4c 61 62 65 6c 20 22 25 |in use..|Label "%|
|00005710| 73 22 20 77 61 73 20 6e | 65 76 65 72 20 64 65 66 |s" was n|ever def|
|00005720| 69 6e 65 64 00 00 00 14 | 00 00 00 14 00 00 00 10 |ined....|........|
|00005730| 00 00 03 e8 00 00 49 6e | 64 65 78 20 6f 75 74 20 |......In|dex out |
|00005740| 6f 66 20 62 6f 75 6e 64 | 73 20 66 6f 72 20 6c 69 |of bound|s for li|
|00005750| 73 74 20 69 6e 73 65 72 | 74 69 6f 6e 00 00 49 6e |st inser|tion..In|
|00005760| 64 65 78 20 6f 75 74 20 | 6f 66 20 62 6f 75 6e 64 |dex out |of bound|
|00005770| 73 20 66 6f 72 20 6c 69 | 73 74 20 64 65 6c 65 74 |s for li|st delet|
|00005780| 69 6f 6e 00 43 61 6e 6e | 6f 74 20 61 6c 6c 6f 63 |ion.Cann|ot alloc|
|00005790| 61 74 65 20 6c 69 73 74 | 20 65 6c 65 6d 65 6e 74 |ate list| element|
|000057a0| 00 00 43 61 6e 6e 6f 74 | 20 61 6c 6c 6f 63 61 74 |..Cannot| allocat|
|000057b0| 65 20 6c 69 73 74 20 68 | 65 61 64 65 72 00 0a 00 |e list h|eader...|
|000057c0| 00 00 73 00 6c 69 73 74 | 20 28 25 6c 64 20 65 6c |..s.list| (%ld el|
|000057d0| 65 6d 65 6e 74 25 73 2c | 20 25 6c 64 20 6e 6f 6e |ement%s,| %ld non|
|000057e0| 7a 65 72 6f 29 00 3a 0a | 00 00 20 20 5b 5b 25 6c |zero).:.|.. [[%l|
|000057f0| 64 5d 5d 20 3d 20 00 00 | 0a 00 20 20 2e 2e 2e 0a |d]] = ..|.. ....|
|00005800| 00 00 49 6e 63 6f 6d 70 | 61 74 69 62 6c 65 20 6d |..Incomp|atible m|
|00005810| 61 74 72 69 78 20 64 69 | 6d 65 6e 73 69 6f 6e 73 |atrix di|mensions|
|00005820| 20 66 6f 72 20 61 64 64 | 00 00 49 6e 63 6f 6d 70 | for add|..Incomp|
|00005830| 61 74 69 62 6c 65 20 6d | 61 74 72 69 78 20 62 6f |atible m|atrix bo|
|00005840| 75 6e 64 73 20 66 6f 72 | 20 61 64 64 00 00 49 6e |unds for| add..In|
|00005850| 63 6f 6d 70 61 74 69 62 | 6c 65 20 6d 61 74 72 69 |compatib|le matri|
|00005860| 78 20 64 69 6d 65 6e 73 | 69 6f 6e 73 20 66 6f 72 |x dimens|ions for|
|00005870| 20 73 75 62 00 00 49 6e | 63 6f 6d 70 61 74 69 62 | sub..In|compatib|
|00005880| 6c 65 20 6d 61 74 72 69 | 78 20 62 6f 75 6e 64 73 |le matri|x bounds|
|00005890| 20 66 6f 72 20 73 75 62 | 00 00 4d 61 74 72 69 78 | for sub|..Matrix|
|000058a0| 20 64 69 6d 65 6e 73 69 | 6f 6e 20 6d 75 73 74 20 | dimensi|on must |
|000058b0| 62 65 20 74 77 6f 20 66 | 6f 72 20 6d 75 6c 00 00 |be two f|or mul..|
|000058c0| 49 6e 63 6f 6d 70 61 74 | 69 62 6c 65 20 62 6f 75 |Incompat|ible bou|
|000058d0| 6e 64 73 20 66 6f 72 20 | 6d 61 74 72 69 78 20 6d |nds for |matrix m|
|000058e0| 75 6c 00 00 4d 61 74 72 | 69 78 20 64 69 6d 65 6e |ul..Matr|ix dimen|
|000058f0| 73 69 6f 6e 20 6d 75 73 | 74 20 62 65 20 74 77 6f |sion mus|t be two|
|00005900| 20 66 6f 72 20 73 71 75 | 61 72 65 00 53 71 75 61 | for squ|are.Squa|
|00005910| 72 69 6e 67 20 6e 6f 6e | 2d 73 71 75 61 72 65 20 |ring non|-square |
|00005920| 6d 61 74 72 69 78 00 00 | 4d 61 74 72 69 78 20 64 |matrix..|Matrix d|
|00005930| 69 6d 65 6e 73 69 6f 6e | 20 6d 75 73 74 20 62 65 |imension| must be|
|00005940| 20 74 77 6f 20 66 6f 72 | 20 70 6f 77 65 72 00 00 | two for| power..|
|00005950| 52 61 69 73 69 6e 67 20 | 6e 6f 6e 2d 73 71 75 61 |Raising |non-squa|
|00005960| 72 65 20 6d 61 74 72 69 | 78 20 74 6f 20 61 20 70 |re matri|x to a p|
|00005970| 6f 77 65 72 00 00 52 61 | 69 73 69 6e 67 20 6d 61 |ower..Ra|ising ma|
|00005980| 74 72 69 78 20 74 6f 20 | 6e 6f 6e 2d 69 6e 74 65 |trix to |non-inte|
|00005990| 67 72 61 6c 20 70 6f 77 | 65 72 00 00 52 61 69 73 |gral pow|er..Rais|
|000059a0| 69 6e 67 20 6d 61 74 72 | 69 78 20 74 6f 20 76 65 |ing matr|ix to ve|
|000059b0| 72 79 20 6c 61 72 67 65 | 20 70 6f 77 65 72 00 00 |ry large| power..|
|000059c0| 4d 61 74 72 69 78 20 6e | 6f 74 20 31 64 20 66 6f |Matrix n|ot 1d fo|
|000059d0| 72 20 63 72 6f 73 73 20 | 70 72 6f 64 75 63 74 00 |r cross |product.|
|000059e0| 4d 61 74 72 69 78 20 6e | 6f 74 20 73 69 7a 65 20 |Matrix n|ot size |
|000059f0| 33 20 66 6f 72 20 63 72 | 6f 73 73 20 70 72 6f 64 |3 for cr|oss prod|
|00005a00| 75 63 74 00 4d 61 74 72 | 69 78 20 6e 6f 74 20 31 |uct.Matr|ix not 1|
|00005a10| 64 20 66 6f 72 20 64 6f | 74 20 70 72 6f 64 75 63 |d for do|t produc|
|00005a20| 74 00 49 6e 63 6f 6d 70 | 61 74 69 62 6c 65 20 6d |t.Incomp|atible m|
|00005a30| 61 74 72 69 78 20 73 69 | 7a 65 73 20 66 6f 72 20 |atrix si|zes for |
|00005a40| 64 6f 74 20 70 72 6f 64 | 75 63 74 00 44 69 76 69 |dot prod|uct.Divi|
|00005a50| 73 69 6f 6e 20 62 79 20 | 7a 65 72 6f 00 00 44 69 |sion by |zero..Di|
|00005a60| 76 69 73 69 6f 6e 20 62 | 79 20 7a 65 72 6f 00 00 |vision b|y zero..|
|00005a70| 4d 61 74 72 69 78 20 64 | 69 6d 65 6e 73 69 6f 6e |Matrix d|imension|
|00005a80| 20 6d 75 73 74 20 62 65 | 20 74 77 6f 20 66 6f 72 | must be| two for|
|00005a90| 20 74 72 61 6e 73 70 6f | 73 65 00 00 4e 65 67 61 | transpo|se..Nega|
|00005aa0| 74 69 76 65 20 6e 75 6d | 62 65 72 20 6f 66 20 70 |tive num|ber of p|
|00005ab0| 6c 61 63 65 73 20 66 6f | 72 20 6d 61 74 72 6f 75 |laces fo|r matrou|
|00005ac0| 6e 64 00 00 4e 65 67 61 | 74 69 76 65 20 6e 75 6d |nd..Nega|tive num|
|00005ad0| 62 65 72 20 6f 66 20 70 | 6c 61 63 65 73 20 66 6f |ber of p|laces fo|
|00005ae0| 72 20 6d 61 74 62 72 6f | 75 6e 64 00 46 69 6c 6c |r matbro|und.Fill|
|00005af0| 69 6e 67 20 64 69 61 67 | 6f 6e 61 6c 73 20 6f 66 |ing diag|onals of|
|00005b00| 20 6e 6f 6e 2d 73 71 75 | 61 72 65 20 6d 61 74 72 | non-squ|are matr|
|00005b10| 69 78 00 00 4d 61 74 72 | 69 78 20 64 69 6d 65 6e |ix..Matr|ix dimen|
|00005b20| 73 69 6f 6e 20 6d 75 73 | 74 20 62 65 20 74 77 6f |sion mus|t be two|
|00005b30| 20 66 6f 72 20 73 65 74 | 74 69 6e 67 20 74 6f 20 | for set|ting to |
|00005b40| 69 64 65 6e 74 69 74 79 | 00 00 4d 61 74 72 69 78 |identity|..Matrix|
|00005b50| 20 6d 75 73 74 20 62 65 | 20 73 71 75 61 72 65 20 | must be| square |
|00005b60| 66 6f 72 20 73 65 74 74 | 69 6e 67 20 74 6f 20 69 |for sett|ing to i|
|00005b70| 64 65 6e 74 69 74 79 00 | 4d 61 74 72 69 78 20 64 |dentity.|Matrix d|
|00005b80| 69 6d 65 6e 73 69 6f 6e | 20 6d 75 73 74 20 62 65 |imension| must be|
|00005b90| 20 74 77 6f 20 66 6f 72 | 20 69 6e 76 65 72 73 65 | two for| inverse|
|00005ba0| 00 00 49 6e 76 65 72 74 | 69 6e 67 20 6e 6f 6e 2d |..Invert|ing non-|
|00005bb0| 73 71 75 61 72 65 20 6d | 61 74 72 69 78 00 4d 61 |square m|atrix.Ma|
|00005bc0| 74 72 69 78 20 69 73 20 | 6e 6f 74 20 69 6e 76 65 |trix is |not inve|
|00005bd0| 72 74 69 62 6c 65 00 00 | 4d 61 74 72 69 78 20 64 |rtible..|Matrix d|
|00005be0| 69 6d 65 6e 73 69 6f 6e | 20 6d 75 73 74 20 62 65 |imension| must be|
|00005bf0| 20 74 77 6f 20 66 6f 72 | 20 64 65 74 65 72 6d 69 | two for| determi|
|00005c00| 6e 61 6e 74 00 00 4e 6f | 6e 2d 73 71 75 61 72 65 |nant..No|n-square|
|00005c10| 20 6d 61 74 72 69 78 20 | 66 6f 72 20 64 65 74 65 | matrix |for dete|
|00005c20| 72 6d 69 6e 61 6e 74 00 | 43 61 6e 6e 6f 74 20 67 |rminant.|Cannot g|
|00005c30| 65 74 20 6d 65 6d 6f 72 | 79 20 74 6f 20 61 6c 6c |et memor|y to all|
|00005c40| 6f 63 61 74 65 20 6d 61 | 74 72 69 78 20 6f 66 20 |ocate ma|trix of |
|00005c50| 73 69 7a 65 20 25 64 00 | 0a 6d 61 74 20 5b 00 00 |size %d.|.mat [..|
|00005c60| 6d 61 74 20 5b 00 25 73 | 25 6c 64 3a 25 6c 64 00 |mat [.%s|%ld:%ld.|
|00005c70| 25 73 25 6c 64 00 2c 00 | 00 00 73 00 5d 20 28 25 |%s%ld.,.|..s.] (%|
|00005c80| 6c 64 20 65 6c 65 6d 65 | 6e 74 25 73 2c 20 25 6c |ld eleme|nt%s, %l|
|00005c90| 64 20 6e 6f 6e 7a 65 72 | 6f 29 00 00 3a 0a 00 00 |d nonzer|o)..:...|
|00005ca0| 20 20 5b 00 25 73 25 6c | 64 00 2c 00 5d 20 3d 20 | [.%s%l|d.,.] = |
|00005cb0| 00 00 0a 00 20 20 2e 2e | 2e 0a 00 00 00 01 00 02 |.... ..|........|
|00005cc0| 00 01 ff ff d8 ea ff ff | d8 f0 00 01 00 00 00 05 |........|........|
|00005cd0| ff ff d9 16 ff ff d9 1a | 00 01 00 01 00 03 ff ff |........|........|
|00005ce0| d9 40 ff ff d9 46 00 02 | 00 00 ff ff d9 80 00 00 |.@...F..|........|
|00005cf0| 00 02 00 00 ff ff d9 84 | 00 00 00 01 00 00 ff ff |........|........|
|00005d00| d9 88 ff ff d9 8c 00 02 | 00 00 ff ff d9 96 00 00 |........|........|
|00005d10| 00 02 00 00 ff ff d9 9a | ff ff d9 9e 00 01 00 00 |........|........|
|00005d20| ff ff d9 b4 ff ff d9 b8 | 00 02 00 00 ff ff d9 d0 |........|........|
|00005d30| ff ff d9 d4 00 01 00 00 | ff ff d9 f6 ff ff d9 fc |........|........|
|00005d40| 00 01 00 00 ff ff da 16 | ff ff da 1c 00 02 00 00 |........|........|
|00005d50| 00 04 ff ff da 26 ff ff | da 2a 00 01 00 01 00 00 |.....&..|.*......|
|00005d60| ff ff da 60 ff ff da 64 | 00 02 00 01 00 02 ff ff |...`...d|........|
|00005d70| da 7e ff ff da 82 00 02 | 00 01 00 00 ff ff da bc |.~......|........|
|00005d80| ff ff da c0 00 02 00 00 | ff ff da ea ff ff da ee |........|........|
|00005d90| 00 02 00 00 ff ff db 00 | ff ff db 04 00 01 00 00 |........|........|
|00005da0| ff ff db 1a ff ff db 1e | 00 01 00 00 ff ff db 2c |........|.......,|
|00005db0| ff ff db 32 00 01 00 00 | 00 06 ff ff db 42 ff ff |...2....|.....B..|
|00005dc0| db 46 00 01 00 00 00 07 | ff ff db 60 ff ff db 64 |.F......|...`...d|
|00005dd0| 00 01 00 00 00 08 ff ff | db 84 ff ff db 8c 00 02 |........|........|
|00005de0| 00 00 ff ff db aa ff ff | db b0 00 02 00 00 ff ff |........|........|
|00005df0| db c8 ff ff db ce 00 02 | 00 00 ff ff db f8 ff ff |........|........|
|00005e00| db fe 00 02 00 00 ff ff | dc 26 ff ff dc 2e 00 03 |........|.&......|
|00005e10| 00 00 ff ff dc 56 ff ff | dc 5c 00 02 00 00 ff ff |.....V..|.\......|
|00005e20| dc 7e ff ff dc 84 00 00 | 00 24 00 00 00 64 00 00 |.~......|.$...d..|
|00005e30| 0a 54 68 65 20 66 6f 6c | 6c 6f 77 69 6e 67 20 6f |.The fol|lowing o|
|00005e40| 62 6a 65 63 74 20 72 6f | 75 74 69 6e 65 73 20 61 |bject ro|utines a|
|00005e50| 72 65 20 64 65 66 69 6e | 61 62 6c 65 2e 0a 00 00 |re defin|able....|
|00005e60| 4e 6f 74 65 3a 20 78 78 | 20 72 65 70 72 65 73 65 |Note: xx| represe|
|00005e70| 6e 74 73 20 74 68 65 20 | 61 63 74 75 61 6c 20 6f |nts the |actual o|
|00005e80| 62 6a 65 63 74 20 74 79 | 70 65 20 6e 61 6d 65 2e |bject ty|pe name.|
|00005e90| 0a 0a 00 00 4e 61 6d 65 | 09 41 72 67 73 09 43 6f |....Name|.Args.Co|
|00005ea0| 6d 6d 65 6e 74 73 0a 00 | 00 00 78 78 5f 25 2d 38 |mments..|..xx_%-8|
|00005eb0| 73 20 25 64 09 25 73 0a | 00 00 0a 00 49 6c 6c 65 |s %d.%s.|....Ille|
|00005ec0| 67 61 6c 20 61 63 74 69 | 6f 6e 20 66 6f 72 20 6f |gal acti|on for o|
|00005ed0| 62 6a 65 63 74 20 63 61 | 6c 6c 00 00 4f 62 6a 65 |bject ca|ll..Obje|
|00005ee0| 63 74 20 72 6f 75 74 69 | 6e 65 20 63 61 6c 6c 65 |ct routi|ne calle|
|00005ef0| 64 20 77 69 74 68 20 6e | 6f 6e 2d 6f 62 6a 65 63 |d with n|on-objec|
|00005f00| 74 00 5f 00 4e 6f 6e 2d | 72 65 61 6c 20 70 6f 77 |t._.Non-|real pow|
|00005f10| 65 72 00 00 46 75 6e 63 | 74 69 6f 6e 20 22 25 73 |er..Func|tion "%s|
|00005f20| 22 20 69 73 20 75 6e 64 | 65 66 69 6e 65 64 00 00 |" is und|efined..|
|00005f30| 42 61 64 20 6e 75 6d 62 | 65 72 20 6f 66 20 61 72 |Bad numb|er of ar|
|00005f40| 67 73 20 74 6f 20 63 61 | 6c 63 75 6c 61 74 65 00 |gs to ca|lculate.|
|00005f50| 49 6e 74 65 67 65 72 20 | 72 65 74 75 72 6e 20 76 |Integer |return v|
|00005f60| 61 6c 75 65 20 72 65 71 | 75 69 72 65 64 00 42 61 |alue req|uired.Ba|
|00005f70| 64 20 6f 62 6a 65 63 74 | 20 72 65 74 75 72 6e 00 |d object| return.|
|00005f80| 6f 62 6a 20 25 73 20 7b | 00 00 2c 20 00 00 52 61 |obj %s {|.., ..Ra|
|00005f90| 69 73 69 6e 67 20 6f 62 | 6a 65 63 74 20 74 6f 20 |ising ob|ject to |
|00005fa0| 6e 6f 6e 2d 69 6e 74 65 | 67 72 61 6c 20 70 6f 77 |non-inte|gral pow|
|00005fb0| 65 72 00 00 52 61 69 73 | 69 6e 67 20 6f 62 6a 65 |er..Rais|ing obje|
|00005fc0| 63 74 20 74 6f 20 76 65 | 72 79 20 6c 61 72 67 65 |ct to ve|ry large|
|00005fd0| 20 70 6f 77 65 72 00 00 | 4f 62 6a 65 63 74 20 74 | power..|Object t|
|00005fe0| 79 70 65 20 22 25 73 22 | 20 69 73 20 61 6c 72 65 |ype "%s"| is alre|
|00005ff0| 61 64 79 20 64 65 66 69 | 6e 65 64 00 54 6f 6f 20 |ady defi|ned.Too |
|00006000| 6d 61 6e 79 20 6f 62 6a | 65 63 74 20 74 79 70 65 |many obj|ect type|
|00006010| 73 20 69 6e 20 75 73 65 | 00 00 43 61 6e 6e 6f 74 |s in use|..Cannot|
|00006020| 20 61 6c 6c 6f 63 61 74 | 65 20 6f 62 6a 65 63 74 | allocat|e object|
|00006030| 20 74 79 70 65 00 43 61 | 6e 6e 6f 74 20 61 6c 6c | type.Ca|nnot all|
|00006040| 6f 63 61 74 65 20 65 6c | 65 6d 65 6e 74 20 6e 61 |ocate el|ement na|
|00006050| 6d 65 00 00 41 6c 6c 6f | 63 61 74 69 6e 67 20 62 |me..Allo|cating b|
|00006060| 61 64 20 6f 62 6a 65 63 | 74 20 69 6e 64 65 78 00 |ad objec|t index.|
|00006070| 4f 62 6a 65 63 74 20 74 | 79 70 65 20 6e 6f 74 20 |Object t|ype not |
|00006080| 64 65 66 69 6e 65 64 00 | 43 61 6e 6e 6f 74 20 61 |defined.|Cannot a|
|00006090| 6c 6c 6f 63 61 74 65 20 | 6f 62 6a 65 63 74 00 00 |llocate |object..|
|000060a0| 43 61 6e 6e 6f 74 20 61 | 6c 6c 6f 63 61 74 65 20 |Cannot a|llocate |
|000060b0| 6f 62 6a 65 63 74 00 00 | 70 72 69 6e 74 00 70 72 |object..|print.pr|
|000060c0| 69 6e 74 20 76 61 6c 75 | 65 2c 20 64 65 66 61 75 |int valu|e, defau|
|000060d0| 6c 74 20 70 72 69 6e 74 | 73 20 65 6c 65 6d 65 6e |lt print|s elemen|
|000060e0| 74 73 00 00 6f 6e 65 00 | 6d 75 6c 74 69 70 6c 69 |ts..one.|multipli|
|000060f0| 63 61 74 69 76 65 20 69 | 64 65 6e 74 69 74 79 2c |cative i|dentity,|
|00006100| 20 64 65 66 61 75 6c 74 | 20 69 73 20 31 00 74 65 | default| is 1.te|
|00006110| 73 74 00 00 6c 6f 67 69 | 63 61 6c 20 74 65 73 74 |st..logi|cal test|
|00006120| 20 28 66 61 6c 73 65 2c | 74 72 75 65 20 3d 3e 20 | (false,|true => |
|00006130| 30 2c 31 29 2c 20 64 65 | 66 61 75 6c 74 20 74 65 |0,1), de|fault te|
|00006140| 73 74 73 20 65 6c 65 6d | 65 6e 74 73 00 00 61 64 |sts elem|ents..ad|
|00006150| 64 00 73 75 62 00 6e 65 | 67 00 6e 65 67 61 74 69 |d.sub.ne|g.negati|
|00006160| 76 65 00 00 6d 75 6c 00 | 64 69 76 00 6e 6f 6e 2d |ve..mul.|div.non-|
|00006170| 69 6e 74 65 67 72 61 6c | 20 64 69 76 69 73 69 6f |integral| divisio|
|00006180| 6e 00 69 6e 76 00 6d 75 | 6c 74 69 70 6c 69 63 61 |n.inv.mu|ltiplica|
|00006190| 74 69 76 65 20 69 6e 76 | 65 72 73 65 00 00 61 62 |tive inv|erse..ab|
|000061a0| 73 00 61 62 73 6f 6c 75 | 74 65 20 76 61 6c 75 65 |s.absolu|te value|
|000061b0| 20 77 69 74 68 69 6e 20 | 67 69 76 65 6e 20 65 72 | within |given er|
|000061c0| 72 6f 72 00 6e 6f 72 6d | 00 00 73 71 75 61 72 65 |ror.norm|..square|
|000061d0| 20 6f 66 20 61 62 73 6f | 6c 75 74 65 20 76 61 6c | of abso|lute val|
|000061e0| 75 65 00 00 63 6f 6e 6a | 00 00 63 6f 6e 6a 75 67 |ue..conj|..conjug|
|000061f0| 61 74 65 00 70 6f 77 00 | 69 6e 74 65 67 65 72 20 |ate.pow.|integer |
|00006200| 70 6f 77 65 72 2c 20 64 | 65 66 61 75 6c 74 20 64 |power, d|efault d|
|00006210| 6f 65 73 20 6d 75 6c 74 | 69 70 6c 79 2c 20 73 71 |oes mult|iply, sq|
|00006220| 75 61 72 65 2c 20 69 6e | 76 65 72 73 65 00 73 67 |uare, in|verse.sg|
|00006230| 6e 00 73 69 67 6e 20 6f | 66 20 76 61 6c 75 65 20 |n.sign o|f value |
|00006240| 28 2d 31 2c 20 30 2c 20 | 31 29 00 00 63 6d 70 00 |(-1, 0, |1)..cmp.|
|00006250| 65 71 75 61 6c 69 74 79 | 20 28 65 71 75 61 6c 2c |equality| (equal,|
|00006260| 6e 6f 6e 65 71 75 61 6c | 20 3d 3e 20 30 2c 31 29 |nonequal| => 0,1)|
|00006270| 2c 20 64 65 66 61 75 6c | 74 20 74 65 73 74 73 20 |, defaul|t tests |
|00006280| 65 6c 65 6d 65 6e 74 73 | 00 00 72 65 6c 00 69 6e |elements|..rel.in|
|00006290| 65 71 75 61 6c 69 74 79 | 20 28 6c 65 73 73 2c 65 |equality| (less,e|
|000062a0| 71 75 61 6c 2c 67 72 65 | 61 74 65 72 20 3d 3e 20 |qual,gre|ater => |
|000062b0| 2d 31 2c 30 2c 31 29 00 | 71 75 6f 00 69 6e 74 65 |-1,0,1).|quo.inte|
|000062c0| 67 65 72 20 71 75 6f 74 | 69 65 6e 74 00 00 6d 6f |ger quot|ient..mo|
|000062d0| 64 00 72 65 6d 61 69 6e | 64 65 72 20 6f 66 20 64 |d.remain|der of d|
|000062e0| 69 76 69 73 69 6f 6e 00 | 69 6e 74 00 69 6e 74 65 |ivision.|int.inte|
|000062f0| 67 65 72 20 70 61 72 74 | 00 00 66 72 61 63 00 00 |ger part|..frac..|
|00006300| 66 72 61 63 74 69 6f 6e | 61 6c 20 70 61 72 74 00 |fraction|al part.|
|00006310| 69 6e 63 00 69 6e 63 72 | 65 6d 65 6e 74 2c 20 64 |inc.incr|ement, d|
|00006320| 65 66 61 75 6c 74 20 61 | 64 64 73 20 31 00 64 65 |efault a|dds 1.de|
|00006330| 63 00 64 65 63 72 65 6d | 65 6e 74 2c 20 64 65 66 |c.decrem|ent, def|
|00006340| 61 75 6c 74 20 73 75 62 | 74 72 61 63 74 73 20 31 |ault sub|tracts 1|
|00006350| 00 00 73 71 75 61 72 65 | 00 00 64 65 66 61 75 6c |..square|..defaul|
|00006360| 74 20 6d 75 6c 74 69 70 | 6c 69 65 73 20 62 79 20 |t multip|lies by |
|00006370| 69 74 73 65 6c 66 00 00 | 73 63 61 6c 65 00 6d 75 |itself..|scale.mu|
|00006380| 6c 74 69 70 6c 79 20 62 | 79 20 70 6f 77 65 72 20 |ltiply b|y power |
|00006390| 6f 66 20 32 00 00 73 68 | 69 66 74 00 73 68 69 66 |of 2..sh|ift.shif|
|000063a0| 74 20 6c 65 66 74 20 62 | 79 20 6e 20 62 69 74 73 |t left b|y n bits|
|000063b0| 20 28 72 69 67 68 74 20 | 69 66 20 6e 65 67 61 74 | (right |if negat|
|000063c0| 69 76 65 29 00 00 72 6f | 75 6e 64 00 72 6f 75 6e |ive)..ro|und.roun|
|000063d0| 64 20 74 6f 20 67 69 76 | 65 6e 20 6e 75 6d 62 65 |d to giv|en numbe|
|000063e0| 72 20 6f 66 20 64 65 63 | 69 6d 61 6c 20 70 6c 61 |r of dec|imal pla|
|000063f0| 63 65 73 00 62 72 6f 75 | 6e 64 00 00 72 6f 75 6e |ces.brou|nd..roun|
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.